I had to wrap up Part -1 rather quickly and probably didn’t get my ideas across, completely. Here is what we did in Part – 1.
used my function to locate the First Notice Date in crude
used the same function to print out exact EasyLanguage syntax
chose to roll eight days before FND and had the function print out pure EasyLanguage
the output created array assignments and loaded the calculated roll points in YYYMMDD format into the array
visually inspected non-adjusted continuous contracts that were spliced eight days before FND
appended dates in the array to match roll points, as illustrated by the dip in open interest
Step 6 from above is very important, because you want to make sure you are out of a position on the correct rollover date. If you are not, then you will absorb the discount between the contracts into your profit/loss when you exit the trade.
Step 2 – Create the code that executes the rollover trades
Here is the code that handles the rollover trades.
// If in a position and date + 1900000 (convert TS date format to YYYYMMDD), // then exit long or short on the current bar's close and then re-enter // on the next bar's open
if d+19000000 = rollArr[arrCnt] then begin condition1 = true; arrCnt = arrCnt + 1; if marketPosition = 1 then begin sell("LongRollExit") this bar on close; buy("LongRollEntry") next bar at open; end; if marketPosition = -1 then begin buyToCover("ShrtRollExit") this bar on close; sellShort("ShrtRollEntry") next bar at open; end;
end;
Code to rollover open position
This code gets us out of an open position during the transition from the old contract to the new contract. Remember our function created and loaded the rollArr for us with the appropriate dates. This simulation is the best we can do – in reality we would exit/enter at the same time in the two different contracts. Waiting until the open of the next bar introduces slippage. However, in the long run this slippage cost may wash out.
Step 3 – Create a trading system with entries and exits
The system will be a simple Donchian where you enter on the close when the bar’s high/low penetrates the highest/lowest low of the past 40 bars. If you are long, then you will exit on the close of the bar whose low is less than the lowest low of the past 20 bars. If short, get out on the close of the bar that is greater than the highest high of the past twenty bars. The first test will show the result of using an adjusted continuous contract rolling 8 days prior to FND
Nice Trade. Around August 2014
This test will use the exact same data to generate the signals, but execution will take place on a non-adjusted continuous contract with rollovers. Here data2 is the adjusted continuous contract and data1 is the non-adjusted.
Same Trade but with rollovers
Still a very nice trade, but in reality you would have to endure six rollover trades and the associated execution costs.
Conclusion
Here is the mechanism of the rollover trade.
Roll out of old contract and roll into new contract
And now the performance results using $30 for round turn execution costs.
No-Rollovers
No Rollovers?
Now with rollovers
Many more trades with the rollovers!
The results are very close, if you take into consideration the additional execution costs. Since TradeStation is not built around the concept of rollovers, many of the trade metrics are not accurate. Metrics such as average trade, percent wins, average win/loss and max Trade Drawdown will not reflect the pure algorithm based entries and exits. These metrics take into consideration the entries and exits promulgated by the rollovers. The first trade graphic where the short was held for several months should be considered 1 entry and 1 exit. The rollovers should be executed in real time, but the performance metrics should ignore these intermediary trades.
I will test these rollovers with different algorithms, and see if we still get similar results, and will post them later. As you can see, testing on non-adjusted data with rollovers is no simple task. Email me if you would like to see some of the code I used in this post.
When I worked at Futures Truth, we tested everything with our Excalibur software. This software used individual contract data and loaded the entire history (well, the part we maintained) of each contract into memory and executed rollovers at a certain time of the month. Excalibur had its limitations as certain futures contracts had very short histories and rollover dates had to be predetermined – in other words, they were undynamic. Over the years, we fixed the short history problem by creating a dynamic continuous contract going back in time for the number of days required for a calculation. We also fixed the database with more appropriate rollover frequency and dates. So in the end, the software simulated what I had expected from trading real futures contracts. This software was originally written in Fortran and for the Macintosh. It also had limitations on portfolio analysis as it worked its way across the portfolio, one complete market at a time. Even with all these limitations, I truly thought that the returns more closely mirrored what a trader might see in real time. Today, there aren’t many, if any, simulation platforms that test on individual contracts. The main reasons for this are the complexity of the software, and the database management. However, if you are willing to do the work, you can get close to testing on individual contract data with EasyLanguage.
Step 1 – Get the rollover dates
This is critical as the dates will be used to roll out of one contract and into another. In this post, I will test a simple strategy on the crude futures. I picked crude because it rolls every month. Some data vendors use a specific date to roll contracts, such as Pinnacle data. In real time trading, I did this as well. We had a calendar for each month, and we would mark the rollover dates for all markets traded at the beginning of each month. Crude was rolled on the 11th or 12th of the prior month to expiration. So, if we were trading the September 2022 contract, we would roll on August 11th. A single order (rollover spread) was placed to sell (if long) the September contract and buy the October contract at the market simultaneously. Sometimes we would leg into the rollover by executing two separate orders – in hopes of getting better execution. I have never been able to find a historic database of when TradeStation performs its rollovers. When you use the default @CL symbol, you allow TradeStation to use a formula to determine the best time to perform a rollover. This was probably based on volume and open interest. TradeStation does allow you to pick several different rollover triggers when using their continuous data.
You can choose type of trigger – (3) Dynamic or (4) Time based.
I am getting ahead of myself, because we can simply use the default @CL data to derive the rollover dates (almost.) Crude oil is one of those weird markets where LTD (last trade days) occurs before FND (first notice day.) Most markets will give you a notice before they back up a huge truck and dump a 1000 barrels of oil at your front door. With crude you have to be Johnny on the spot! Rollover is just a headache when trading futures, but it can be very expensive headache if you don’t get out in time. Some markets are cash settled so rollover isn’t that important, but others result in delivery of the commodity. Most clearing firms will help you unwind an expired contract for a small fee (well relatively small.) In the good old days your full service broker would give you heads up. They would call you and say, “George you have to get out of that Sept. crude pronto!” Some firms would automatically liquidate the offending contract on your behalf – which sounds nice but it could cost you. Over my 30 year history of trading futures I was caught a few times in the delivery process. You can determine these FND and LTD from the CME website. Here is the expiration description for crude futures.
Trading terminates 3 business day before the 25th calendar day of the month prior to the contract month. If the 25th calendar day is not a business day, trading terminates 4 business days before the 25th calendar day of the month prior to the contract month.
You can look this up on your favorite broker’s website or the handy calendars they send out at Christmas. Based on this description, the Sept. 2022 Crude contract would expire on August 20th and here’s why
August 25 is Tuesday
August 24 is Monday- DAY1
August 21 is Friday – DAY2
August 20 is Thursday – DAY3
This is the beauty of a well oiled machine or exchange. The FND will occur exactly as described. All you need to do is get all the calendars for the past ten years and find the 25th of the month and count back three business days. Or if the 25 falls on a weekend count back four business days. Boy that would be chore, would it not? Luckily, we can have the data and an EasyLanguage script do this for us. Take a look at this code and see if it makes any sense to you.
Case "@CL": If dayOfMonth(date) = 25 and firstMonthPrint = false then begin print(date[3]+19000000:8:0); firstMonthPrint = true; end; If(dayOfMonth(date[1]) < 25 and dayOfMonth(date) > 25 ) and firstMonthPrint = false then begin print(date[4]+19000000:8:0); firstMonthPrint = true; end;
Code to printout all the FND of crude oil.
I have created a tool to print out the FND or LTD of any commodity futures by examining the date. In this example, I am using a Switch-Case to determine what logic is applied to the chart symbol. If the chart symbol is @CL, I look to see if the 25th of the month exists and if it does, I print the date 3 days prior out. If today’s day of month is greater than 25 and the prior day’s day of month is less than 25, I know the 25th occurred on a weekend and I must print out the date four bars prior. These dates are FN dates and cannot be used as is to simulate a rollover. You had best be out before the FND to prevent the delivery process. Pinnacle Date rolls the crude on the 11th day of the prior month for its crude continuous contracts. I aimed for this day of the month with my logic. If the FND normally fell on the 22nd of the month, then I should back up either 9 or 10 business days to get near the 11th of the month. Also I wanted to use the output directly in an EasyLanguage strategy so I modified my output to be exact EasyLanguage.
Case "@CL": If dayOfMonth(date) = 25 and firstMonthPrint = false then begin value1 = value1 + 1; print("rollArr[",value1:1:0,"]=",date[9]+19000000:8:0,";"); firstMonthPrint = true; end; If(dayOfMonth(date[1]) < 25 and dayOfMonth(date) > 25 ) and firstMonthPrint = false then begin value1 = value1 + 1; print("rollArr[",value1:1:0,"]=",date[10]+19000000:8:0,";"); // print(date[4]+19000000:8:0); firstMonthPrint = true; end;
Code to print our 9 or 10 bars prior to FND in actual EasyLanguage
Now. that I had the theoretical rollover dates for my analysis I had to make sure the data that I was going to use matched up exactly. As you saw before, you can pick the rollover date for your chart data. And you can also determine the discount to add or subtract to all prior data points based on the difference between the closing prices at the rollover point. I played around with the number of days prior to FND and selected non adjusted for the smoothing of prior data.
Actual data I simulated rollovers with.
How did I determine 8 days Prior to First Notice Date? I plotted different data using a different number of days prior and determined 8 provided a sweet spot between the old and new contract data’s open interest. Can you see the rollover points in the following chart? Ignore the trades – these were a beta test.
The Open Interest Valley is the rollover date.
The dates where the open interest creates a valley aligned very closely with the dates I printed out using my FND date finder function. To be safe, I compared the dates and fixed my array data to match the chart exactly. Here are two rollover trades – now these are correct.
Using an adjusted continuous contract you would not see these trades.
This post turned out to be a little longer than I thought, so I will post the results of using an adjusted continuous contract with no rollovers, and the results using non-adjusted concatenated contracts with rollovers. The strategy will be a simple 40/20 bar Donchian entry/exit. You maybe surprised by the results – stay tuned.
Only Trade the Best Segments of the Equity Curve – Cut Out Drawdown and Take Advantage of Run Ups! Really?
Equity curve feedback has been around for many years and seems highly logical, but one can’t get an industry-wide agreement on its benefit. The main problem is to know when to turn trading off and then back on as you track the equity curve. The most popular approach is to use a moving average of the equity curve to signal system participation. When the equity curve moves below 30, 60, or 90 period-moving average of equity, then just turn it off and wait until the curve crosses back above the average. This approach will be investigated in Part 2 of this series. Another approach is to stop trading once the curve enters a drawdown that exceeds a certain level and then start back up once the equity curve recovers. In this post, this method will be investigated.
Programmers Perspective
How do you go about programming this tool to start with. There are probably multiple ways of accomplishing this task, but the two I have most often observed were the two pass process and the inline simultaneous tracking of the synthetic and actual equity curves. The two pass process generates an unadulterated equity curve and stores the equity and trades either in memory or in a file. The second part of the process monitors the external equity curve along with the external trades synchronously and while trading is turned on, the trades are executed as they occur chronologically. When trading is turned off, the synthetic equity curve and trades are processed along the way. The second method is to create, which I have coined (maybe others too!), a synthetic equity curve and synthetic trades. I have done this in my TradingSimula_18 software by creating a SynthTrade Class. This class contains all the properties of every trade and in turn can use this information to create a synthetic equity curve. The synthetic equity curve and trades are untouched by the real time trading.
Start Simple
The creation of an equity curve monitor and processor is best started using a very simple system. One market algorithm that enters and exits on different dates, where pyramiding and scaling in or out are not allowed. The first algorithm that I tested was a mean reversion system where you buy after two consecutive down closes followed by an up close and then waiting one day. Since I tested the ES over the past 10 years you can assume the trend is up. I must admit that the day delay was a mistake on my behalf. I was experimenting with a four bar pattern and somehow forgot to look at the prior day’s action. Since this is an experiment it is OK!
if marketPosition <> 1 and (c[2] < c[3] and c[3] < c[4] and c[1] > = c[2]) then buy next bar at open;
//The exit is just as simple - //get out after four days (includeing entry bar) on the next bars open - no stops or profit objectives.
If barsSinceEntry > 2 then sell next bar at open;
Simple Strategy to test Synthetic Trading Engine
Here is the unadulterated equity curve using $0 for execution costs.
Non adjusted equity curve of our simple mean reversion system. Wait for a pull back and then a rally before entering.
The Retrace and Recover Method
In this initial experiment, trading is suspended once you reach a draw down of 10% from the peak of the equity curve and then resumes trading once a rally of 15% of the subsequent valley. Here is an intriguing graphic.
Green means ON. Red means OFF. The lower curve is the resultant curve.
I did this analysis by hand with Excel and it is best case scenario. Meaning that when trading is turned back on any current synthetic position is immediately executed in the real world. This experiment resulted in nearly the same drawdown but a large drop in overall equity curve growth – $75K.
Put the Synthetic Equity Curve Engine to the Test
Now that I had the confirmed results of the experiment, I used them as the benchmark against my TS-18 Synthetic Trade Engine. But before I installed the Equity Curve algorithm, I needed to make sure my synthetic trades lined up exactly with the real equity curve. The synthetic curve should align 100% with the real equity curve. If it doesn’t, then there is a problem. This is another reason to start with a simple trading strategy.
Take a look here where I print out the Synthetic Equity curve on a daily basis and compare it with the end result of the analysis.
Synth. matches Reality
Now let’s see if it worked.
Testing with Synth. Equity Curve Trading Turned ON!
The equity curves are very similar. However, there is a difference and this is caused by how one re-enters after trading is turned back on. In this version I tested waiting for a new trade signal which might take a few days. You could re-enter in three different ways:
Automatically enter synthetic position on the next bar’s open
Wait for a new trade signal
Enter immediately if you can get in at a better price
Using the 10% Ret. and 15% Rec. algorithm didn’t help at all. What if we test 10% and 10%.
10% Ret. and 10% Rec.
Now that performed better – more profit and less draw down. Now that I have the synthetic engine working on simple algorithms we can do all sorts of equity curve analysis. In the next installment in this series I will make sure the TS-18 Synthetic Engine can handle more complicated entry and exit algorithms. I have already tested a simple longer term trend following strategy on a medium sized portfolio and the synthetic engine worked fine. The retracement/recovery algorithm at 10%/15% did not work and I will go into the “whys” in my next post.
The last book in the Easing Into EasyLanguage Serieshas finally been put to bed. Unlike the first two books in the series, where the major focus and objective was to introduce basic programming ideas to help get new EasyLanguages users up to speed, this edition introduces more Advanced topics and the code to develop and program them.
Buy this book to learn how to overcome the obstacles that may be holding you back from developing your ideal Analysis Technique. This book could be thousands of pages long because the number of topics could be infinite. The subjects covered in this edition provide a great cross-section of knowledge that can be used further down the road. The tutorials will cover subjects such as:
Arrays – single and multiple dimensions
Functions – creation and communicating via Passed by Value and Passed by Reference
Finite State Machine – implemented via the Switch-Case programming construct
String Manipulation – construction and deconstruction of strings using EasyLanguage functions
Hash Table and Hash Index – a data structure(s) that contains unique addresses of bins that can contain N records
Using Hash Tables – accessing and storing data related to unique Tokens
Token Generation – an individual instance of a type of symbol
Seasonality – in depth analysis of the Ruggiero/Barna and Sheldon Knight Universal Seasonal data
File Manipulation – creating, deleting and writing to external files
Using Projects – organizing Analysis Techniques by grouping support functions and code into a single entity
Text Graphic Objects – extracting text from a chart and storing the object information in arrays for later development into a strategy
Commitment of Traders Report – TradeStation only (not MultiChart compatible) code. Converting the COT indicator and using the FundValue functionality to develop a trading strategy
Multiple Time Frame based indicator – use five discrete time frames and pump the data into a single indicator – “traffic stop light” feel
Once you become a programmer, of any language, you must continually work on honing your craft. This book shows you how to use your knowledge as building blocks to complete some really cool and advanced topics.
Illustrating Difference Between Data Aliasing and Not Data Aliasing
If you have a higher resolution as Data 1 (5 minute in this case) than Data 2 (15 minute), then you must use Data Aliasing if you are going to use a variable to represent a price or a function output. With out Data Aliasing all data references are in terms of Data 1. When the 15 minute bar closes then the current [0] and one bar back[ 1] will be correct – going back further in time will reflect correct data. During the 15 minute bar only the last value [0] will show the correct reading of the last completed 15 minute bar. Once you tie the variable to its correct time frame variableName(0, Data2), you can then reference historic bars in the same fashion as if it were Data1. This includes price references and function output values.
Check this chart out and see if it makes sense to you. I dedicate a portion of a Tutorial on Data Aliasing in my latest book due out next week – Easing Into EasyLanguage – Advanced Topics.
Difference between using Data Aliasing and Not using Data Aliasing
Well it’s been a year, this month, that Murray passed away. I was fortunate to work with him on many of his projects and learned quite a bit about inter-market convergence and divergence. Honestly, I wasn’t that into it, but you couldn’t argue with his results. A strategy that he developed in the 1990s that compared the Bond market with silver really did stand the test of time. He monitored this relationship over the years and watched in wane. Murray replaced silver with $UTY.
The PHLX Utility Sector Index (UTY) is a market capitalization-weighted index composed of geographically diverse public utility stocks.
He wrote an article for EasyLanguage Mastery by Jeff Swanson where he discussed this relationship and the development of inter-market strategies and through statistical analysis proved that these relationships added real value.
I am currently writing Advanced Topics, the final book in my Easing Into EasyLanguage trilogy, and have been working with Murray’s research. I am fortunate to have a complete collection of his Futures Magazine articles from the mid 1990s to the mid 2000s. There is a quite a bit of inter-market stuff in his articles. I wanted, as a tribute and to proffer up some neat code, to show the performance and code of his Bond and $UTY inter-market algorithm.
Here is a version that he published a few years ago updated through June 30, 2022 – no commission/slippage.
Murray’s Bond and $UTY inter-market Strategy
Not a bad equity curve. To be fair to Murray he did notice the connection between $UTY and the bonds was changing over the past couple of year. And this simple stop and reverse system doesn’t have a protective stop. But it wouldn’t look much different with one, because the system looks at momentum of the primary data and momentum of the secondary data and if they are in synch (either positively or negatively correlated – selected by the algo) an order is fired off. If you simply just add a protective stop, and the momentum of the data are in synch, the strategy will just re-enter on the next bar. However, the equity curve just made a new high recently. It has got on the wrong side of the Fed raising rates. One could argue that this invisible hand has toppled the apple cart and this inter-market relationship has been rendered meaningless.
Murray had evolved his inter-market analysis to include state transitions. He not only looked at the current momentum, but also at where the momentum had been. He assigned the transitions of the momentum for the primary and secondary markets a value from one to four and he felt this state transition helped overcome some of the coupling/decoupling of the inter-market relationship.
However, I wanted to test Murray’s simple strategy with a fixed $ stop and force the primary market to move from positive to negative or negative to positive territory while the secondary market is in the correct relationship. Here is an updated equity curve.
George’s Adaptation and using a $4500 stop loss
This equity curve was developed by using a $4500 stop loss. Because I changed the order triggers, I reoptimized the length of the momentum calculations for the primary and secondary markets. This curve is only better in the category of maximum draw down. Shouldn’t we give Murray a chance and reoptimize his momentum length calculations too! You bet.
Murray Length Optimizations
These metrics were sorted by Max Intraday Draw down. The numbers did improve, but look at the Max Losing Trade value. Murray’s later technology, his State Systems, were a great improvement over this basic system. Here is my optimization using a slightly different entry technique and a $4500 protective stop.
Standing on the Shoulders of a Giant
This system, using Murray’s overall research, achieved a better Max Draw Down and a much better Max Losing Trade. Here is my code using the template that Murray provided in his articles in Futures Magazine and EasyLanguage Mastery.
// Code by Murray Ruggiero // adapted by George Pruitt
If Type=0 Then Begin InterInd=Close of Data(InterSet)-CLose[LenInt] of Data(InterSet); MarkInd=CLose-CLose[LenTr]; end;
If Type=1 Then Begin InterInd=Close of Data(InterSet)-Average(CLose of Data(InterSet),LenInt); MarkInd=CLose-Average(CLose,LenTr); end;
if Relate=1 then begin If InterInd > 0 and MarkInd CROSSES BELOW 0 and LSB>=0 then Buy("GO--Long") Next Bar at open; If InterInd < 0 and MarkInd CROSSES ABOVE 0 and LSB<=0 then Sell Short("GO--Shrt") Next Bar at open;
end; if Relate=0 then begin If InterInd<0 and MarkInd CROSSES BELOW 0 and LSB>=0 then Buy Next Bar at open; If InterInd>0 and MarkInd CROSSES ABOVE 0 and LSB<=0 then Sell Short Next Bar at open; end;
Here the user can actually include more than two data streams on the chart. The InterSet input allows the user to choose or optimize the secondary market data stream. Momentum is defined by two types:
Type 0: Intermarket or secondary momentum simply calculated by close of data(2) – close[LenInt] of date(2) and primary momentum calculated by close – close[LenTr]
Type 1: Intermarket or secondary momentum calculated by close of data(2) – average( close of data2, LenInt) and primary momentum calculated by close – average(close, LenTr)
The user can also input what type of Relationship: 1 for positive correlation and 0 for negative correlation. This template can be used to dig deeper into other market relationships.
George’s Modification
I simply forced the primary market to CROSS below/above 0 to initiate a new trade as long the secondary market was pointing in the right direction.
If InterInd > 0 and MarkInd CROSSES BELOW 0 and LSB>=0 then Buy("GO--Long") Next Bar at open; If InterInd < 0 and MarkInd CROSSES ABOVE 0 and LSB<=0 then Sell Short("GO--Shrt") Next Bar at open;
Using the keyword CROSSES
This was a one STATE transition and also allowed a protective stop to be used without the strategy automatically re-entering the trade in the same direction.
Thank You Murray – we sure do miss you!
Murray loved to share his research and would want us to carry on with it. I will write one or two blogs a year in tribute to Murray and his invaluable research.
Quickly Analyze Market Metrics with Gradient Based Shading
This is a simple indicator but it does involve some semi-advanced topics. Just to let you know I am working on the third book in the Easing Into EasyLanguage series. If you haven’t check out the first two, you might just want to head over to amazon and check those out. This topic falls in the spectrum of the ideas that I will be covering in the Advanced Topics edition. Also to let you know I just published the 2nd Edition of Trend Following Systems: A DIY Project – Batteries Included. Check this out if you want to learn some Python and also see some pretty cool Trend Following algorithms – I include EasyLanguage too!
Shading Between Keltner Channels with RSI Intensity
The code that follows demonstrates how to shade between plots and adjust gradient in terms of the RSI reading. I compiled this with MultiCharts, so I assume it will work there too – just let me know if it doesnt. I found this code somewhere on the web when researching shading. If I knew the original author I would definitely give full credit. The code is rather simple, setting up the chart is just slightly more difficult. The Keltner Channel was used to define the shading boundaries. You could have just as easily used Bollinger Bands or anything that provided a range around the market. Here’s the code.
Basically all this math is doing is keeping the RSI reading within the bounds of the Keltner Upper and Lower Channels. You want a high RSI reading to be near the Upper Channel and a low RSI reading to be near the Lower Channel. You can change up the formula to make more sense.
I have worked with computer graphics for many years and this is really a very neat formula. The generic formula to constrain a value within a boundary is;
Here you take the LowerBand and add the percentage of the MyRSI/100 times the range. This works too. But the original formula scales or intensifies the RSI reading so you get much wider gradient spectrum. The AVG is used as the center of gravity and the RSI is converted in terms of the middle 50 line. A positive number, anything > 50, is then scaled higher in the range and a negative number, anything < 50 is scaled lower in the range. In other words it makes a prettier and more informative picture.
Returns a specific color from a user defined gradient color range, such as Blue to White
Inputs:
dValue = value being passed-in that is within the specified Min/Max range of values
dMin = Starting value for the gradient range, where the nFromColor is displayed
dMax = Ending value for the gradient range, where the nToColor is displayed
nFromColor = Starting color of the gradient
nToColor = Ending color of the gradient
Since the gradient shading will cover up your bars you will need to plot the bars as well.
Chart SetUp
The close should be POINT and the other inputs LINES.
Don’t Forget To Fade Out Your Data Chart
That’s it. Like I stated earlier – I will be including things like this in the Advanced Topics edition. I should have it wrapped sometime in July or August.
Sometimes you just want to create a combined equity curve of several markets and for one reason or another you don’t want to use Maestro. This post will show you an indicator that you can insert into your TradeStation chart/strategies that will output monthly cumulative equity readings. After that I refresh my VBA skills a little bit by creating a VBA Macro/Script that will take the output and parse it into a table where the different months are the rows and the different market EOM equities, for those months, will be the columns. Then all the rows will be summed and then finally a chart will be produced. I will zip the Exel .xlsm and include it at the end of this post.
Part 1: Output Monthly Data to Print Log
You can determine the end of the month by comparing the current month of the date and the month of the prior date. If they are different, then you know you are sitting on the first trading day of the new month. You can then reach back and access the total equity as of yesterday. If you want you can also track the change in month equity. Here is the indicator code in EasyLanguage.
// Non plotting indicator that needs to be applied to // a chart that also has a strategy applied // one that produces a number of trades
if month(date) <> month(date[1]) then begin monthlyEqu = totalEquity[1] - priorMonthEqu; priorMonthEqu = totalEquity[1]; print(getSymbolName,",",month(date[1]):2:0,"-",year(date[1])+1900:4:0,",",monthlyEqu,",",totalEquity); end; totalEquity = i_ClosedEquity;
Indicator that exports the EOM equity values
The interesting part of this code is the print statement. You can use the month and year functions to extract the respective values from the date bar array. I use a formatted print to export the month and year without decimals. Remember 2021 in TradeStation is represented by 121 and all you have to do is add 1900 to get a more comfortable value. The month output is formatted with :2:0 and the year with :4:0. The first value in the format notation informs the computer to allow at least 2 or 4 values for the month and the year respectively. The second value following the second colon informs the computer that you do not want any decimals values (:0). Next insert the indicator into all the charts in your workspace. Here’s a snippet of the output on one market. I tested this on six markets and this data was the output generated. Some of the markets were interspersed and that is okay. You may have a few months of @EC and then a few months of @JY and then @EC again.
If you use this post’s EXCEL workbook with the macro you may need to tell EXCEL to forget any formatting that might already be inside the workbook. Open my workbook and beware that it will inform/warn you that a macro is located inside and that it could be dangerous. If you want to go ahead and enable the macro go ahead. On Sheet1 click in A1 and place the letter “G”. Then goto the Data Menu and then the Data Tools section of the ribbon and click Text to Columns. A dialog will open and ask you they type of file that best describes your data. Click the Delimited radio button and then next. You should see a dialog like this one.
Clear Any Left Over Formatting
Now copy all of the data from the Print-Log and paste it into Column A. If all goes right everything will be dumped in the appropriate rows and in a single column.
The fields will be dumped into a single column
First select column A and go back to the Data Menu and the Data Tools on the Ribbon. Select Delimited and hit next, Choose comma because we used commas to separate our values. Click Next again. Eventually you will get to this dialog.
Make sure you use Date [MDY] for the second column of data.If you chose Date format for column 2 with MDY, then it will be imported into the appropriate column in a date format. This makes charting easier. If all goes well then you will have four columns of data – a column for Symbol, Date, Delta-EOM and EOM. Select column B and right click and select Format Cells.
Clean Up column B by formatting cells and customizing the date format
Once you format the B column in the form of MM-YYYY you will have a date like 9-2007, 10-2007, 11-2007…
Running the VBA Macro/Script
On the Ribbon in EXCEL goto the Developer Tab. If you don’t see it then you will need to install it. Just GOOGLE it and follow their instructions. Once on the Develop Tab goto the Code category and click the Visual Basic Icon. Your VBA IDE will open and should like very similar to this.
VBA IDE [integrated development environment]If all goes according to plan after you hit the green Arrow for the Run command your spreadsheet should like similar to this.
EOM table with Months as Rows and Individual Market EOMs as columns
The Date column will be needed to be reformatted again as Date with Custom MM-YYYY format. Now copy the table by highlighting the columns and rows including the headings and then goto to Insert Menu and select the Charts category.
This is what you should get.
Merged Equity on Closed Trade Basis
This is the output of the SuperTurtle Trading system tested on the currency sector from 2007 to the present.
VBA Code
I have become very spoiled using Python as it does many things for you by simply calling a function. This code took my longer to develop than I thought it would, because I had to back to the really old school of programming (really wanted to see if I could do this from scratch) to get this done. You could of course eliminate some of my code by calling spread sheet functions from within EXCEL. I went ahead and did it the brute force way just to see if I could do it.
Sub combineEquityFromTS()
'read data from columns 'symbol, date, monthlyEquity, cumulativeEquity - format 'create arrays to hold each column of data 'use nested loops to do all the work 'brute force coding, no objects - just like we did in the 80s
Dim symbol(1250) As String Dim symbolHeadings(20) As String Dim myDate(1250) As Long Dim monthlyEquity(1250) As Double Dim cumulativeEquity(1250) As Double
'read the data from the cells dataCnt = 1 Do While Cells(dataCnt, 1) <> "" symbol(dataCnt) = Cells(dataCnt, 1) myDate(dataCnt) = Cells(dataCnt, 2) monthlyEquity(dataCnt) = Cells(dataCnt, 3) cumulativeEquity(dataCnt) = Cells(dataCnt, 4) dataCnt = dataCnt + 1 Loop dataCnt = dataCnt - 1
'get distinct symbolNames and use as headers symbolHeadings(1) = symbol(1) numSymbolheadings = 1 For i = 2 To dataCnt - 1 If symbol(i) <> symbol(i + 1) Then newSymbol = True For j = 1 To numSymbolheadings If symbol(i + 1) = symbolHeadings(j) Then newSymbol = False End If Next j If newSymbol = True Then numSymbolheadings = numSymbolheadings + 1 symbolHeadings(numSymbolheadings) = symbol(i + 1) End If End If Next i
'Remove duplicate months in date array 'have just one column of month end dates
Cells(2, 7) = myDate(1) dispRow = 2 numMonths = 1 i = 1 Do While i <= dataCnt foundDate = False For j = 1 To numMonths If myDate(i) = Cells(j + 1, 7) Then foundDate = True End If Next j If foundDate = False Then numMonths = numMonths + 1 Cells(numMonths + 1, 7) = myDate(i) End If i = i + 1 Loop 'put symbols across top of table 'put "date" and "cumulative" column headings in proper 'locations too
Cells(1, 7) = "Date" For i = 1 To numSymbolheadings Cells(1, 7 + i) = symbolHeadings(i) Next i
numSymbols = numSymbolheadings Cells(1, 7 + numSymbols + 1) = "Cumulative" 'now distribute the monthly returns in their proper 'slots in the table dispRow = 2 dispCol = 7 For i = 1 To numSymbols For j = 2 To numMonths + 1 For k = 1 To dataCnt foundDate = False If symbol(k) = symbolHeadings(i) And myDate(k) = Cells(j, 7) Then Cells(dispRow, dispCol + i) = cumulativeEquity(k) dispRow = dispRow + 1 Exit For End If 'for later use 'If j > 1 Then ' If symbol(k) = symbolHeadings(i) And myDate(k) < Cells(j, 7) And myDate(k) > Cells(j - 1, 7) Then ' dispRow = dispRow + 1 ' End If 'End If Next k Next j dispRow = 2 Next i 'now accumulate across table and then down For i = 1 To numMonths cumulative = 0 For j = 1 To numSymbols cumulative = cumulative + Cells(i + 1, j + 7) Next j Cells(i + 1, 7 + numSymbols + 1) = cumulative Next i End Sub
This a throwback to the 80s BASIC on many of the family computers of that era. If you are new to VBA you can access cell values by using the keyword Cells and the row and column that points to the data. The first thing you do is create a Module named combineEquityFromTS and in doing so it will create a Sub combineEquityFromTS() header and a End Sub footer. All of your code will be squeezed between these two statements. This code is ad hoc because I just sat down and started coding without much forethought.
Use DIM to Dimension an Arrays
I like to read the date from the cells into arrays so I can manipulate the data internally. Here I create five arrays and then loop through column one until there is no longer any data. The appropriate arrays are filled with their respective data from each row.
Dimension and Load Arrays
Once the data is in arrays we can start do parse it. The first thing I want is to get the symbolHeadings or markets. I know the first row has a symbol name so I go ahead and put that into the symbolHeadings array. I kept track of the number of rows in the data with the variable dataCnt. Here I use nested loops to work my way down the data and keep track of new symbols as I encounter them. If the symbol changes values, I then check my list of stored symbolHeadings and if the new symbol is not in the list I add it.
Parse different symbols from all data
Since all the currencies will have the same month values I wanted to compress all the months into a single discrete month list. This isn’t really all that necessary since we could have just prefilled the worksheet with monthly date values going back to 2007. This algorithm is similar to the one that is used to extract the different symbols. Except this time, just for giggles, I used a Do While Loop.
Squash Monthly List Down
As well as getting values from cells you can also put values into them. Here I run through the list of markets and put them into Cells(1, 7+i). When working with cells you need to make sure you get the offset correct. Here I wanted to put the market names in Row A and Columns: H, I, J, K, L, M.
Column H = 8
Column I = 9
Column J = 10
Column K =11
Column L = 12
Column M = 13
Put Markets as Column Headers
Cells are two dimensional arrays. However if you are going to use what is on the worksheet make sure you are referencing the correct data. Here I introduce dispRow and dispCol as the anchor points where the data I need to reference starts out.
Three nested loops – Whopee.
Here I first parse through each symbol and extract the EOM value that matches the symbol name and month-year value. So if I am working on @EC and I need the EOM for 07-2010, I fist loop through the month date values and compare the symbol AND myDate (looped through with another for-loop) with the month date values. If they are the same then I dump the value in the array on to the spreadsheet. And yes I should have used this:
For j = dispRow to numMonths-1
Instead of –
For j = 2 to numMonths-1
Keeping arrays in alignment with Cells can be difficult. I have a hybrid approach here. I will clean this up later and stick just with arrays and only use Cells to extract and place data. The last thing you need to do is sum each row up and store that value in the Cumulative column.
Across and then Down to sum accumulated monthly returns
Conclusion
This was another post where we relied on another application to help us achieve our objective. If you are new to EXCEL VBA (working with algorithms that generate trades) you can find out more in my Ultimate Algorithmic Trading System Toolbox book. Even if you don’t get the book this post should get you started on the right track.
SuperTrend is a trading strategy and indicator all built into one entity. There are a couple of versions floating around out there. MultiCharts and Sierra Chart both have slightly different flavors of this combo approach.
Ratcheting Trailing Stop Paradigm
This indic/strat falls into this category of algorithm. The indicator never moves away from your current position like a parabolic stop or chandelier exit. I used the code that was disclosed on Futures.io or formerly known as BigMikesTrading blog. This version differs from the original SuperTrend which used average true range. I like Big Mike’s version so it will discussed here.
Big Mike’s Math
The math for this indicator utilizes volatility in the terms of the distance the market has travelled over the past N days. This is determined by calculating the highest high of the last N days/bars and then subtracting the lowest low of last Ndays/bars. Let’s call this the highLowRange. The next calculation is an exponential moving average of the highLowRange. This value will define the market volatility. Exponential moving averages of the last strength days/bars highs and lows are then calculated and divided by two – giving a midpoint. The volatility measure (multiplied my mult) is then added to this midpoint to calculate an upper band. A lower band is formed by subtracting the volatility measure X mult from the midpoint.
Upper or Lower Channel?
If the closing price penetrates the upper channel and the close is also above the highest high of strength days/bars back (offset by one of course) then the trend will flip to UP. When the trend is UP, then the Lower Channel is plotted. Once the trend flips to DN, the upper channel will be plotted. If the trend is UP the lower channel will either rise with the market or stay put. The same goes for a DN trend – hence the ratcheting. Here is a graphic of the indicator on CL.
Super Trend by Bike Mike
If you plan on using an customized indicator in a strategy it is always best to build the calculations inside a function. The function then can be used in either an indicator or a strategy.
Function Name: SuperTrend_BM
Function Type: Series – we will need to access prior variable values
if trend < 0 and trend[1] > 0 then trendDN = True; if trend > 0 and trend[1] < 0 then trendUP = True;
//ratcheting mechanism if trend > 0 then dn = maxList(dn,dn[1]); if trend < 0 then up = minList(up,up[1]);
// if trend dir. changes then assign // up and down appropriately if trendUP then up = xAvg + mult * xAvgRng; if trendDN then dn = xAvg - mult * xAvgRng;
if trend = 1 then ST = dn else ST = up;
STrend = trend;
SuperTrend_BM = ST;
SuperTrend ala Big Mike
The Inputs to the Function
The original SuperTrend did include the Strength input. This input is a Donchian like signal. Not only does the price need to close above/below the upper/lower channel but also the close must be above/below the appropriate Donchian Channels to flip the trend, Also notice we are using a numericRef as the type for STrend. This is done because we need the function to return two values: trend direction and the upper or lower channel value. The appropriate channel value is assigned to the function name and STrend contains the Trend Direction.
A Function Driver in the Form of an Indicator
A function is a sub-program and must be called to be utilized. Here is the indicator code that will plot the values of the function using: length(9), mult(1), strength(9).
// SuperTrend indicator // March 25 2010 // Big Mike https://www.bigmiketrading.com inputs: length(9), mult(1), strength(9);
vars: strend(0), st(0);
st = SuperTrend_BM(length, mult,strength,strend);
if strend = 1 then Plot1(st,"SuperTrendUP"); if strend = -1 then Plot2(st,"SuperTrendDN");
Function Drive in the form of an Indicator
This should be a fun indicator to play with in the development of a trend following approach. My version of Big Mike’s code is a little different as I wanted the variable names to be a little more descriptive.
Update Feb 28 2022
I forgot to mention that you will need to make sure your plot lines don’t automatically connect.
Plot Style Setting
Can You Do This with Just One Plot1?
An astute reader brought it to my attention that we could get away with a single plot and he was right. The reason I initially used two plot was to enable the user to chose his/her own plot colors by using the Format dialog.
//if strend = 1 then Plot1(st,"SuperTrendUP"); //if strend = -1 then Plot2(st,"SuperTrendDN");
if strend = 1 then SetPlotColor(1,red); if strend = -1 then SetPlotColor(1,green);
In writing the Hi-Res edition of Easing Into EasyLanguage I should have included this sample program. I do point out the limitations of the EntryPrice keyword/function in the book. But recently I was tasked to create a pyramiding scheme template that used minute bars and would initiate a position with N Shares and then pyramid up to three times by adding on N Shares at the last entry price + one 10 -Day ATR measure as the market moves in favor of the original position. Here is an example of just such a trade.
Pyramid 3 Times After Initial Trade Entry. Where’s the EntryPrice?
EntryPrice only contains the original entry price. So every time you add on a position, the EntryPrice doesn’t reflect this add on price. I would like to be able to index into this keyword/function and extract any EntryPrice. If you enter at the market, then you can keep track of entry prices because a market order is usually issued from an if-then construct:
//Here I can keep track of entry prices because I know //exactly when and where they occur.
if c > c[1] and value1 > value2 then begin buy("MarketOrder") next bar at market; lastEntryPrice = open of next bar; end;
Last Entry Price tracking is easy if using Market Orders
But what if you are using a stop or limit order. You don’t know ahead of time where one of these types of orders will hit up. It could be the next bar or it could be five bars later or who knows.
AvgEntryPrice Makes Up for the Weakness of EntryPrice
AvgEntryPrice is a keyword/function that returns the average of the entries when pyramiding. Assume you buy at 42.00 and pyramid the same number of shares at 46.50 – AvgEntryPrice will be equal to (42.00 + 46.50) / 2 = 44.25. With this information you can determine the two entry prices. You already know the original price. Take a look at this code.
// remember currentShares and avgEntryPrice ARE EasyLanguage Keywords/Functions if mp[1] = mp and mp = -1 and currentShares > curShares then begin totShorts = totShorts + 1; if currentShares > initShares then begin lastEntryPrice = totShorts * avgEntryPrice - entryPriceSums; entryPriceSums = entryPriceSums + lastEntryPrice; print(d," Short addon ",lastEntryPrice," ",totShorts," ",avgEntryPrice," ",entryPriceSums); end; end;
Calculating the true LastEntryPrice
Remember currentShares is a keyword/function and it is immediately updated when more shares are added or taken off. CurShares is my own variable where I keep track of the prior currentShares , so if currentShares (real number of shares) is greater than the prior curShares (currentShares) then I know 100%, a position has been pyramided as long the the mp stays the same. If currentShares increases and mp stays constant, then you can figure out the last entry price where the pyramid takes place. First you tick totShorts up by 1. If currentShares > initShares, then you know you are pyramiding so
Don’t believe me. Let’s test it. Remember original entry was 42.00 and the add on was at 46.50. TotShorts now equals 2.
Initial entryPrice = 42.00 so entryPriceSums is set to 42.00
After pyramiding avgEntryPrice is set to 44.25
lastEntryPrice = 2 * 44.25 – 42.00 = 46.50
entryPriceSums is then set to 42.00 + 46.50 or 88.50
So every time you add on a position, then you flow through this logic and you can keep track of the actual last entry price even if it is via a limit or stop order.
But wait there is more. This post is also a small glimpse into what I will be writing about in the Easing Into EasyLanguage: Advanced Topics. This system definitely falls into what I discussed in the Hi-Res Edition. Here is where we tip over into Advanced Topics. The next book is not about creating dialogs or trading apps using OOEL (object oriented EasyLanguage), but we do use some of those topics to do some rather complicated back testing things.
Now that we know how to calculate the lastEntryPrice wouldn’t it be really cool if we could keep track of all of the entryPrices during the pyramid stream. If I have pyramided four times, I would like to know entryPrice 1, entryPrice 2, entryPrice 3 and entryPrice 4.
EntryPrice Vector
Dr. VectorLove or How I Learned to Stop Worrying and Love Objects
I have discussed vectors before but I really wanted to discuss them more. Remember Vectors are just lists or arrays that don’t need all the maintenance. Yes you have to create them which can be a pain, but once you learn and forget it twenty times it starts to sink in. Or just keep referring back to this web page.
Using elsystem.collections;
vars: Vector entryPriceVector(Null);
once Begin entryPriceVector = new Vector; end;
The Bare Minimum to Instantiate a Vector
Type – “Using elsystem.collections; “
Declare entryPriceVector as a Vector and set it equal to Null
Use Once and instantiate entryPriceVector by using the keyword new < object type>;
A Vector is part of elsystem’s collection objects. Take a look at this updated code,
if mp[1] = mp and mp = -1 and currentShares > curShares then begin totShorts = totShorts + 1; if currentShares > initShares then begin lastEntryPrice = totShorts * avgEntryPrice - entryPriceSums; entryPriceVector.push_back(lastEntryPrice); entryPriceSums = entryPriceSums + lastEntryPrice; print(d," Short addon ",lastEntryPrice," ",entryPrice," ",entryPrice(1)," ",totShorts," ",avgEntryPrice," ",entryPriceSums," ",entryPriceVector.back() astype double," ",entryPriceVector.count asType int); if not(entryPriceVector.empty()) then begin for m = 0 to entryPriceVector.count-1 begin print(entryPriceVector.at(m) astype double); end; end; end; end;
LastEntryPrice and Pushing It onto the Vector and Then Printing Out the Vector
After the lastEntryPrice is calculated it is pushed onto the entryPriceVector using the function (method same thing but it is attached to the Vector class).push_back(lastEntryPrice);
entryPriceVector.push_back(lastEntryPrice);
So every time a new lastEntryPrice is calculated it is pushed onto the Vector at the back end. Now if the entryPriceVector is not empty then we can print its contents by looping and indexing into the Vector.
if not(entryPriceVector.empty()) then begin for m = 0 to entryPriceVector.count-1 begin print(entryPriceVector.at(m) astype double); end; end;
Looping through a Vector and Printing Out its Contents
Remember if you NOT a boolean value then it turns it to off/on or just the opposite of the boolean value. If entryPriceVector is not empty then proceed. entryPriceVector.count holds the number of values stuffed into the vector. You can index into the Vector by using .at(m), If you want to print out the value of the Vector .at(m), then you will need to typecast the Vector object as what ever it is holding. We know we are pushing numbers with decimals (double type) onto the Vector so we know we can evaluate them as a double type. Just remember you have to do this when printing out the values of the Vector.
Okay you can see where we moved into an Advanced Topics area with this code. But it really becomes useful when trying to overcome some limitations of EasyLanguage. Remember keep an eye open for Advanced Topics sometime in the Spring.
Backtesting with [Trade Station,Python,AmiBroker, Excel]. Intended for informational and educational purposes only!
Get All Five Books in the Easing Into EasyLanguage Series - The Trend Following Edition is now Available!
Announcement – A Trend Following edition has been added to my Easing into EasyLanguage Series! This edition will be the fifth and final installment and will utilize concepts discussed in the Foundation editions. I will pay respect to the legends of Trend Following by replicating the essence of their algorithms. Learn about the most prominent form of algorithmic trading. But get geared up for it by reading the first four editions in the series now. Get your favorite QUANT the books they need!
The Foundation Edition. The first in the series.
This series includes five editions that covers the full spectrum of the EasyLanguage programming language. Fully compliant with TradeStation and mostly compliant with MultiCharts. Start out with the Foundation Edition. It is designed for the new user of EasyLanguage or for those you would like to have a refresher course. There are 13 tutorials ranging from creating Strategies to PaintBars. Learn how to create your own functions or apply stops and profit objectives. Ever wanted to know how to find an inside day that is also a Narrow Range 7 (NR7?) Now you can, and the best part is you get over 4 HOURS OF VIDEO INSTRUCTION – one for each tutorial.
Hi-Res Edition Cover
This book is ideal for those who have completed the Foundation Edition or have some experience with EasyLanguage, especially if you’re ready to take your programming skills to the next level. The Hi-Res Edition is designed for programmers who want to build intraday trading systems, incorporating trade management techniques like profit targets and stop losses. This edition bridges the gap between daily and intraday bar programming, making it easier to handle challenges like tracking the sequence of high and low prices within the trading day. Plus, enjoy 5 hours of video instruction to guide you through each tutorial.
Advanced Topics Cover
The Advanced Topics Edition delves into essential programming concepts within EasyLanguage, offering a focused approach to complex topics. This book covers arrays and fixed-length buffers, including methods for element management, extraction, and sorting. Explore finite state machines using the switch-case construct, text graphic manipulation to retrieve precise X and Y coordinates, and gain insights into seasonality with the Ruggiero/Barna Universal Seasonal and Sheldon Knight Seasonal methods. Additionally, learn to build EasyLanguage projects, integrate fundamental data like Commitment of Traders, and create multi-timeframe indicators for comprehensive analysis.
Get Day Trading Edition Today!
The Day Trading Edition complements the other books in the series, diving into the popular approach of day trading, where overnight risk is avoided (though daytime risk still applies!). Programming on high-resolution data, such as five- or one-minute bars, can be challenging, and this book provides guidance without claiming to be a “Holy Grail.” It’s not for ultra-high-frequency trading but rather for those interested in techniques like volatility-based breakouts, pyramiding, scaling out, and zone-based trading. Ideal for readers of the Foundation and Hi-Res editions or those with EasyLanguage experience, this book offers insights into algorithms that shaped the day trading industry.
Trend Following Cover.
For thirty-one years as the Director of Research at Futures Truth Magazine, I had the privilege of collaborating with renowned experts in technical analysis, including Fitschen, Stuckey, Ruggiero, Fox, and Waite. I gained invaluable insights as I watched their trend-following methods reach impressive peaks, face sharp declines, and ultimately rebound. From late 2014 to early 2020, I witnessed a dramatic downturn across the trend-following industry. Iconic systems like Aberration, CatScan, Andromeda, and Super Turtle—once thriving on robust trends of the 1990s through early 2010s—began to falter long before the pandemic. Since 2020 we have seen the familiar trends return. Get six hours of video instruction with this edition.
Pick up your copies today – e-Book or paperback format – at Amazon.com