Category Archives: Must Know EasyLanguage

Extend Data Mining to Actual Trading System

Data Mining May or May Not Link Causality

A study between ice cream sales and crime rate demonstrated a high level of correlation.  However, it would be illogical to assume that buying more ice cream leads to more crime.  There are just too many other factors and variables involved to draw a conclusion.  So, data mining with EasyLanguage may or may not lead to anything beneficial.  One thing is you cannot hang your hat completely on this type of research.  A reader of my books asked if there was evidence that pointed to the best time to enter and exit a day trade.  Is it better to enter in the morning or in the afternoon or are there multiple trading windows throughout the day?  I thought I would try to answer the question using TradeStation’s optimization capabilities.

If You Like the Theory and its EasyLanguage Code of this Blog Post – Check Out my New Book at Amazon.com

Get Your Copy Now!

Create a Search Space of Different Window Opening Times and Open Duration

My approach is just one of a few that can be used to help answer this question.  To cut down on time and the size of this blog we will only look at day trading the @ES.D from the long side.  The search space boundaries can be defined by when we open the trading window and how long we leave it open.  These two variables will be defined by inputs so we can access the optimization engine.  Here is how I did it with EasyLanguage code.

inputs: openWindowTime(930),openWindowOffset(5),windowDuration(60);
inputs: canBuy(True),canShort(True);



if t >= calcTime(openWindowTime,openWindowOffset) and t < calcTime(openWindowTime,openWindowOffset+windowDuration) Then
Begin
if entriesToday(d) = 0 and canBuy Then
buy next bar at market;
if entriesToday(d) = 0 and canShort Then
sellshort next bar at market ;
end;

if t = calcTime(openWindowTime,openWindowOffset+windowDuration) Then
Begin
if marketPosition = 1 then sell next bar at open;
if marketPosition =-1 then buyToCover next bar at open;
end;
setExitOnClose;
Optimize when to open and how long to leave open

The openWindowTime input is the basis from where we open the trading window.  We are working with the @ES.D with an open time of 9:30 AM eastern.  The openWindowOffset will be incremented in minutes equivalent to the data resolution of the chart, five minutes.  We will start by opening the window at 9:35 and leave it open for 60 minutes.  The next iteration in the optimization loop will open the window at 9:40 and keep it open for 60 minutes as well.  Here are the boundaries that I used to define our search space.

  • window opening times offset: 5 to 240 by 5 minutes
  • window opening duration: 60 to 240 by 5 minutes
Optimization Ranges for Window Open and Open Duration

A total of 1739 iterations will span our search space.   The results state that waiting for twenty minutes before buying and then exiting 190 minutes later, worked best.  But also entering 90 minutes after the open and exiting 4 hours later produced good results as well (no trade execution fee were utilized.)  Initially I was going to limit entry to once per day, but then I thought it might be worthwhile to enter a fresh position, if the first one is stopped out, or pyramid if it hasn’t.  I also thought, each entry should have its own protective stop amount.  Would entering later require a small stop – isn’t most of the volatility, on average, expressed during the early part of the day.

Results of different opening and duration times.

Build a Strategy that Takes on a Secondary Trade as a New Position or One that is Pyramided.

This is not a simple strategy.  It sounds simple and it requires just a few lines of code.  But there is a trick in assigning each entry with its own exit.  As you can see there is a potential for trade overlap.  You can get long 20 minutes after the open and then add on 70 minutes  (90 from the open) later.  If the first position hasn’t been stopped out, then you will pyramid at the second trade entry.  You have to tell TradeStation to allow this to happen.

Allow TradeStation to Pyramid up to 2 positions with different signals.

System Rules

  1. Enter long 20 minutes after open
  2. Enter long 90 minutes after open
  3. Exit 1st entry 190 minutes later or at a fixed $ stop loss
  4. Exit 2nd entry 240 minutes later or at a fixed $ stop loss
  5. Make sure you are out at the end of the day

Sounds pretty simple, but if you want to use different stop values for each entry, then the water gets very muddy.

AvgEntryPrice versus EntryPrice

Assume you enter long and then you add on another long position.  If you examine EntryPrice you will discover that it reflects the initial entry price only.   The built-in variable AvgEntryPrice will be updated with the average price between the two entries.  If you want to key off of the second entry price, then you will need to do a little math.

avgEntryPrice = (entry price 1 + entry price 2) / 2

or ap = (ep1 + ep2) /2

Using this formula and simple algebra we can arrive at ep2 using this formula:  ep2 = 2*ap – ep1.  Since we already know ep1 and ap, ep2 is easy to get to.  We will need this information and also the functionality of from entry.  You tie entries and exits together with the keywords from entry.  Here are the entry and exit trade directives.

if time = calcTime(openTime,entryTime1Offset) then 
buy("1st buy") next bar at open;

if time = calcTime(openTime,entryTime2Offset) then
buy("2nd buy") next bar at open;


if time = calcTime(openTime,entryTime1Offset + exitTime1Offset) then
sell("1st exit") from entry("1st buy") next bar at open;

if time = calcTime(openTime,entryTime2Offset + exitTime2Offset) then
sell("2nd exit") from entry("2nd buy") next bar at open;

if mp = 1 Then
Begin
value1 = avgEntryPrice;
if currentShares = 2 then value1 = avgEntryPrice*2 - entryPrice;
sell("1st loss") from entry("1st buy") next bar at entryPrice - stopLoss1/bigPointValue stop;
sell("2nd loss") from entry("2nd buy") next bar at value1 - stopLoss2/bigPointValue stop;
end;

if mp = 1 and t = openTime + barInterval then sell("oops") next bar at open;
Entry and Exit Directives Code

The trade entry directives are rather simple, but you must use the calcTime function to arrive at the correct entry and exit times.  Here we are using the benchmark, openTime and the offsets of entryTime1Offset and entryTime2Offset.  This function adds (or subtracts if the offset is negative) the offset to the benchmark.  This takes care of when the trading windows open, but you must add the entry1TimeOffset to exit1TimeOffset to calculate the duration the trading window is to remain open.  This goes for the second entry window as well.

Now let’s look at the exit directives.  Notice how I exit the 1st buy entry with the code from entry (“1st buy”).  This ties the entry and exit directives together.  This is pretty much straightforward as well.  The tricky part arrives when we try to apply different money management stops to each entry.  Exiting from the 1st buy requires us to simply subtract the $ in terms of points from entryPrice.  We must use our new equation to derive the 2nd entry price when two contracts are concurrent.   But what if we get stopped out of the first position prior to entering the second position?  Should we continue using the formula.  No.  We need to fall back to entryPrice or avgEntryPrice:  when only one contract or unit is in play, these two variables are equal.  We initially assign the variable value1 to the avgEntryPrice and only use our formula when currentShares = 2.  This code will work a majority of the time.  But take a look at this trade:

Didn’t have an intervening bar to update the 2nd entry price. The first entry price was used as the basis to calculate the stop loss!

This is an anomaly, but anomalies can add up.  What happened is we added the second position and the market moved down very quickly – too quickly for the correct entry price to be updated.  The stop out (2nd loss) was elected by using the 1st entry price, not the second.  You can fix this with the following two solutions:

  1. Increase data resolution and hope for an intervening bar
  2. Force the second loss to occur on the subsequent trading bar after entry.  This means you will not be stopped out on the bar of entry but will have to wait five minutes or whatever bar interval you are working with.
Fixed – just told TS to place the order at the close of the bar where we were filled!

OK – Now How Do We Make this a Viable Trading System

If you refer back to the optimization results you will notice that the average trade (before execution costs) was around $31.  Keep in mind we were trading every day.  This is just the beginning of your research – did we find a technical advantage?  No.  We just found out that you can enter and exit at different times of the trading day, and you can expect a positive outcome.  Are there better times to enter and exit?  YES.  You can’t trade this approach without adding some technical analysis – a reason to enter based on observable patterns.  This process is called FILTERING.   Maybe you should only enter after range compression.  Or after the market closed up on the prior day, or if the market was an NR4 (narrow range 4.)  I have added all these filters so you can iterate across them all using the optimization engine.  Take a look:

filter1 = True;
filter2 = True;

if filtNum1 = 1 then
filter1 = close of data2 > close[1] of data2;
if filtNum1 = 2 Then
filter1 = close of data2 < close[1] of data2;
if filtNum1 = 3 Then
filter1 = close of data2 > open of data2;
if filtNum1 = 4 Then
filter1 = close of data2 < open of data2;
if filtNum1 = 5 Then
filter1 = close of data2 > (h data2 + l data2 + c data2)/3;
if filtNum1 = 6 Then
filter1 = close of data2 < (h data2 + l data2 + c data2)/3;
if filtNum1 = 7 Then
filter1 = openD(0) > close data2;
if filtNum1 = 8 Then
filter1 = openD(0) < close data2;

if filtNum2 = 1 Then
filter2 = trueRange data2 < avgTrueRange(10) data2;
if filtNum2 = 2 Then
filter2 = trueRange data2 > avgTrueRange(10) data2;
if filtNum2 = 3 Then
filter2 = range data2 = lowest(range data2,4);
if filtNum2 = 4 Then
filter2 = range data2 = highest(range data2,4);
Filter1 and Filter2 - filter1 looks for a pattern and filter2 seeks range compression/expansion.

Let’s Search – And Away We Go

I will optimize across the different patterns and range analysis and different $ stops for each entry (1st and 2nd.)

Optimize across patterns and volatility and protective stops for 1st and 2nd entries.

Best Total Profit

Trade when today’s open is greater than yesterday’s close and don’t worry about the volatility.  Use $550 for the first entry and $600 for the second.

Best W:L Ratio and Respectable Avg. Trade

This curve was created  by waiting for yesterday’s close to be below the prior day’s and yesterday being an NR4 (narrow range 4).  And using a $500 protective stop for both the 1st and 2nd entries.

Did We Find the Holy Grail?  Gosh No!

This post served two purposes.  One, how to set up a framework for data mining and two, create code that can handle things that aren’t apparently obvious – entryPrice versus avgEntryPrice!

if filter1 and filter2 Then
begin
if time = calcTime(openTime,entryTime1Offset) then
buy("1st buy") next bar at open;

if time = calcTime(openTime,entryTime2Offset) then
buy("2nd buy") next bar at open;
end;
Incorporating Filter1 and Filter2 in the Entry Logic

 

The Day Trading Edition of Easing Into EasyLanguage Now Available!

Learn Pyramiding, Scaling In or Out, Camarilla, Break Out and Clear Out techniques in day trading environment.

Get Your Copy Now!
  • Chapter 1 – Open Range Break Out and other Sundries
  • Chapter 2 – Improving Our ORBO with Pattern Recognition
  • Chapter 3 – Time based Breakout
  • Chapter 4 – Trading After the Lunch Break
  • Chapter 5 – Extending Our Break Out Technology With Pyramiding and Scaling Out
  • Chapter 6 – Scaling Out of Pyramided and multiple Positions
  • Chapter 7 – Pyramania
  • Chapter 8 – Introduction to Zone Trading with the Camarilla
  • Chapter 9 – Day Trading Templates Appendix
A Chart from Chapter 8 – Camarilla Equation

Take a look at this function that spans the entire search space of all the combinations of the days of the week.

inputs: optimizeNumber(numericSimple);
arrays: dowArr[31]("");
vars: currDOWStr(""),daysOfWeek("MTWRF");

//Once
//begin
print(d," ",t," assigning list ");
dowArr[1]="MTWRF";dowArr[2]="MTWR";
dowArr[3]="MTWF";dowArr[4]="MTRF";
dowArr[5]="MWRF";dowArr[6]="TWRF";
dowArr[7]="MTW";dowArr[8]="MTR";
dowArr[9]="MTF";dowArr[10]="MWR";
dowArr[11]="MWF";dowArr[12]="MRF";
dowArr[13]="TWR";dowArr[14]="TWF";
dowArr[15]="TRF";dowArr[16]="WRF";
dowArr[17]="MT";dowArr[18]="MW";
dowArr[19]="MR";dowArr[20]="MF";
dowArr[21]="TW";dowArr[22]="TR";
dowArr[23]="TF";dowArr[24]="WR";
dowArr[25]="WF";dowArr[26]="RF";
dowArr[27]="M";dowArr[28]="T";
dowArr[29]="W";dowArr[30]="R";
dowArr[31]="F";
//end;

OptimizeDaysOfWeek = False;
if optimizeNumber > 0 and optimizeNumber < 32 Then
Begin
currDOWStr = midStr(daysOfWeek,dayOfWeek(d),1);
if inStr(dowArr[optimizeNumber],currDOWStr) <> 0 Then
OptimizeDaysOfWeek = True;
end;
All The Permutations of the Days of the Week

 

Trade after the Lunch Break in Apple

Williams Awesome Oscillator Indicator and Strategy

Awesome Oscillator

This is a very simple yet telling analysis.  Here is the EasyLanguage:

[LegacyColorValue = true]; 



Vars:oscVal(0),mavDiff(0);


mavDiff= Average((h+l)/2,5)-Average((h+l)/2,34);
oscVal = mavDiff - average(mavDiff,5);

Plot3( 0, "ZeroLine" ) ;

if currentbar>=1 then
if oscVal>oscVal[1] then plot1(mavDiff,"+AO")
else plot2(mavDiff,"-AO")
Williams Awesome Oscillator Source Code

And here is what it looks like:

Williams Awesome Oscillator

The code reveals a value that oscillates around 0.  First calculate the difference between the 5-day moving average of the daily midPoint (H+ L)/2 and the 34-day moving average of the midPoint.    A positive value informs us that the market is in a bullish stance whereas a negative represents a bearish tone.  Basically, the positive value is simply stating the shorter-term moving average is above the longer term and vice versa. The second step in the indicator calculation is to subtract the 5-day moving average of the differences from the current difference.  If the second calculation is greater than the prior day’s calculation, then plot the original calculation value as green (AO+).  If it is less (A0-), then paint the first calculation red.  The color signifies the momentum between the current and the five-day smoothed value.

Awesome Indicator Strategy

mavDiff= Average((h+l)/2,5)-Average((h+l)/2,34);
oscVal = mavDiff - average(mavDiff,5);


mp = marketPosition;
mavUp = countIf(mavDiff > 0,30);
mavDn = countIf(mavDiff < 0,30);

value1 = countIf(oscVal > oscVal[1],10);

oscRatio = value1/10*100;
The beginning of an AO based Strategy

Here I am using the very handy countIf function.  This function will tell you how many times a Boolean comparison is true out of the last N days.  Her I use the function twice, but I could have replaced the second function call with mavDn = 30 – mavUp.  So, I am counting the number of occurrences of when the mavDiff is positive and negative over the past 30-days.  I also count the number of times the oscVal is greater than the prior oscVal.  In other words, I am counting the number of green bars.  I create a ratio between green bars and 10.  If there are six green bars, then the ratio equals 60% This indicates that the ratio of red bars would be 40%.  Based on these readings you can create trade entry directives.

if canShort and mavUp > numBarsAbove and mavDiff > minDiffAmt and oscRatio >= obRatio then
sellShort next bar at open;

if canBuy and mavDn > numBarsBelow and mavDiff < -1*minDiffAmt and oscRatio <= osRatio Then
buy next bar at open;
Trade Directives

If the number of readings out of the last 30 days is greater than numBarsAbove and mavDiff is of a certain magnitude and the oscillator ratio is greater than buyOSCRatio, then you can go short on the next open.  Here we are looking for the market to converge.  When these conditions are met then I think the market is overbought.  You can see how I set up the long entries.  As you can see from the chart it does a pretty good job.  Optimizing the parameters on the crude oil futures yielded this equity curve.

Too few trades!

Not bad, but not statistically significant either.  One way to generate more trades is to install some trade management such as protective stop and profit objective.

Using wide stop and profit objective.

Using a wide protective stop and large profit objective tripled the number of trades.  Don’t know if it is any better, but total performance was not derived from just a couple of trades.  When you are working with a strategy like this and overlay trade management you will often run into this situation.

Exiting while conditions to short are still turned on!

Here we either get stopped out or take a profit and immediately reenter the market.  This occurs when the conditions are still met to short when we exit a trade.  The fix for this is to determine when an exit has occurred and force the entry trigger to toggle off.  But you have to figure out how to turn the trigger back on.  I reset the triggers based on the number of days since the triggers were turned off – a simple fix for this post.  If you want to play with this strategy, you will probably need a better trigger reset.

I am using the setStopLoss and setProfitTarget functionality via their own strategies – Stop Loss and Profit Target.  These functions allow exit on the same as entry, which can be useful.  Since we are executing on the open of the bar, the market could definitely move either in the direction of the stop or the profit.  Since we are using wide values, the probability of both would be minimal.  So how do you determine when you have exited a trade.  You could look the current bar’s marketPosition and compare it with the prior bar’s value, but this doesn’t work 100% of the time.  We could be flat at yesterday’s close, enter long on today’s open and get stopped out during the day and yesterday’s marketPosition would be flat and today’s marketPosition would be flat as well.  It would be as if nothing occurred when in fact it did.

Take a look at this code and see if it makes sense to you.

if mp[1] = 1 and totalTrades > totTrades then
canBuy = False;

if mp[1] = -1 and totalTrades > totTrades then
canShort = False;

if mp[1] = 0 and totalTrades > totTrades then
Begin
if mavDiff[1] < 0 then canBuy = False;
if mavDiff[1] > 0 then canShort = False;
end;

totTrades = totalTrades;
Watch for a change in totalTrades.

If we were long yesterday and totalTrades (builtin keyword/function) increases above my own totTrades, then we know a trade was closed out – a long trade that is.  A closed out short position is handled in the same manner.  What about when yesterday’s position is flat and totalTrades increases.  This means an entry and exit occurred on the current bar.  You have to investigate whether the position was either long or short.  I know I can only go long when mavDiff is less than zero and can only go short when mavDiff is greater than zero.  So, all you need to do is investigate yesterday’s mavDiff  to help you determine what position was entered and exited on the same day.  After you determine if an exit occurred, you need to update totTrades with totalTrades.  Once you determine an exit occurred you turn canBuy or canShort off.  They can only be turned back on after N bars have transpired since they were turned off.   I use my own barsSince function to help determine this.

if  not(canBuy) Then
if barsSince(canBuy=True,100,1,0) = 6 then
canBuy = True;
if not(canShort) Then
if barsSince(canShort=True,100,1,0) = 6 then
canShort = True;

Complete strategy code:

inputs:numBarsAbove(10),numBarsBelow(10),buyOSCRatio(60),shortOSRatio(40),minDiffAmt(2),numBarsTrigReset(6);
Vars:canBuy(True),canShort(True),mp(0),totTrades(0),oscVal(0),mavDiff(0),oscRatio(0),mavUp(0),mavDn(0),stopLoss$(1000);


mavDiff= Average((h+l)/2,5)-Average((h+l)/2,34);
oscVal = mavDiff - average(mavDiff,5);


mp = marketPosition;
mavUp = countIf(mavDiff > 0,30);
mavDn = countIf(mavDiff < 0,30);

value1 = countIf(oscVal > oscVal[1],10);

oscRatio = value1/10*100;



if not(canBuy) Then
if barsSince(canBuy=True,100,1,0) = numBarsTrigReset then
canBuy = True;
if not(canShort) Then
if barsSince(canShort=True,100,1,0) = numBarsTrigReset then
canShort = True;

if mp[1] = 1 and totalTrades > totTrades then
canBuy = False;

if mp[1] = -1 and totalTrades > totTrades then
canShort = False;

if mp[1] = 0 and totalTrades > totTrades then
Begin
if mavDiff[1] < 0 then canBuy = False;
if mavDiff[1] > 0 then canShort = False;
end;


if canShort and mavUp > numBarsAbove and mavDiff > minDiffAmt and oscRatio >= buyOSCRatio then
sellShort next bar at open;

if canBuy and mavDn > numBarsBelow and mavDiff < -1*minDiffAmt and oscRatio <= shortOSRatio Then
buy next bar at open;

totTrades = totalTrades;
Inputs used to generate the equity curve.

EasyLanguage to Determine Week Of Month

Week Of Month

I could be wrong, but I couldn’t find this functionality in EasyLanguage.  I was testing a strategy that didn’t want to trade a specific week of the month.   If it’s not built-in, then it must be created.   I coded this functionality in Sheldon Knight’s Seasonality indicator but wanted to create a simplified universal version.  I may have run into one little snag.  Before discussing the snag, here is a Series function that returns my theoretical week of the month.

 

vars: weekCnt(0),cnt(0);
vars: newMonth(False),functionSeed(False);

if month(d) <> month(d[1]) Then
Begin
weekCnt = 1;
end;

if dayOfWeek(d)<dayOfWeek(d[1]) and month(d) = month(d[1]) Then
begin
weekCnt = weekCnt + 1;
end;
if weekCnt = 1 and dayofMonth(d) = 2 and dayOfWeek(D) = Sunday Then
print("Saturday was first day of month"," ",d);

WeekOfMonth = weekCnt;
Series Function to Return Week Rank

This function is of type Series because it has to remember the prior output of the function call – weekCnt.  This function is simple as it will not provide the week count accurately (at the very beginning of a test) until a new month is encountered in your data.  It needs a ramp up (at least 30 days of daily or intraday data) to get to that new month.  I could have used a while loop the first time the function was called and worked my way back in time to the beginning of the month and along the way calculate the week of the month.  I decided against that, because if you are using tick data then that would be a bunch of loops and TradeStation can get caught in an infinite loop very easily.

This code is rather straightforward.  If the today’s month is not equal to yesterday’s month, then weekCnt is set to one.  Makes sense, right.  The first day of the month should be the first week of the month.  I then compare the day of week of today against the day of week of yesterday.  If today’s day of week is less than the prior day’s day of week, then it must be a Sunday (futures markets open Sunday night to start the week) or Monday (Sunday = 0 and Monday = 1 and Friday = 5.)  If this occurs and today’s month is the same as yesterday’s month, weekCnt is incremented.  Why did I check for the month?  What if the first trading day was a Sunday or Monday?  Without the month comparison I would immediately increment weekCnt and that would be wrong.  That is all there is to it?  Or is it?  Notice I put some debug code in the function code.

Is There a Snag?

April 2023 started the month on Saturday which is the last day of the week, but it falls in the first week of the month.  The sun rises on Sunday and it falls in the second week of the month.  If you think about my code, this is the first trading day of the month for futures:

month(April 2nd) = April or 4

month(March 31st) = March or 3

They do not equal so weekCnt is set to 1.  The first trading day of the month is Sunday or DOW=0 and the prior trading day is Friday or DOW=5.  WeekCnt is NOT incremented because month(D) doesn’t equal month(D[1]).  Should WeekCnt be incremented?  On a calendar basis it should, but on a trading calendar maybe not.  If you are searching for the first occurrence of a certain day of week, then my code will work for you.  On April 2nd, 2023, it is the second week of the month, but it is the first Sunday of April.

Thoughts???  Here are a couple of screenshots of interest.

Indicator in Histogram form representing the Week of Month
Some months are spread across SIX weeks.

This function is an example of where we let the data tell us what to do.  I am sure there is calendar functions, in other languages, that can extract information from just the date.  However, I like to extract from what is actually going to be traded.

Email me if you have any questions, concerns, criticism, or a better mouse trap.

Reentry of Long at better price

How to reenter at a better price after a stop loss

A reader of this blog wanted to know how he could reenter a position at a better price if the first attempt turned out to be a loser.  Here I am working with 5 minute bars, but the concepts work for daily bars too.  The daily bar is quite a bit easier to program.

ES.D Day Trade using 30 minute Break Out

Here we are going to wait for the first 30 minutes to develop a channel at the highest high and the lowest low of the first 30 minutes.  After the first 30 minutes and before 12:00 pm eastern, we will place a buy stop at the upper channel.  The initial stop for this initial entry will be the lower channel.  If we get stopped out, then we will reenter long at the midpoint between the upper and lower channel.  The exit for this second entry will be the lower channel minus the width of the upper and lower channel.

Here are some pix.  It kinda, sorta worked here – well the code worked perfectly.   The initial thrust blew through the top channel and then immediately consolidated, distributed and crashed through the bottom channel.  The bulls wanted another go at it, so they pushed it halfway to the midpoint and then immediately the bears came in and played tug of war.  In the end the bulls won out.

Initial Break Out Failed. But 2nd Entry made a little.

Here the bulls had initial control and then the bears, and then the bulls and finally the bears tipped the canoe over.

We gave it the old college try didn’t we fellas.

This type of logic can be applied to any daytrade or swing trade algorithm.  Here is the code for the strategy.

//working with 5 minute bars here
//should work with any time frame

input:startTradeTime(0930),numOfBarsHHLL(6),stopTradeTime(1200),maxLongEntriesToday(2);
vars: startTime(0),endTime(0),
barCountToday(0),totTrades(0),mp(0),longEntriesToday(0),
periodHigh(-99999999),periodLow(99999999);

startTime = sessionStartTime(0,1);
endTime = sessionStartTime(0,1);


if t = calcTime(startTime,barInterval) Then
begin
periodHigh = -99999999;
periodLow = 99999999;
barCountToday = 1;
totTrades = totalTrades;
end;

if barCountToday <= numOfBarsHHLL Then
Begin
periodHigh = maxList(periodHigh,h);
periodLow = minList(periodLow,l);
end;

barCountToday = barCountToday + 1;

longEntriesToday = totalTrades - totTrades;

mp = marketPosition;
if t <= stopTradeTime and barCountToday > numOfBarsHHLL Then
Begin
if longEntriesToday = 0 then
buy("InitBreakOut") next bar at periodHigh + minMove/priceScale stop;
if longEntriesToday = 1 Then
buy("BetterBuy") next bar at (periodHigh+periodLow)/2 stop;
end;

if mp = 1 then
if longEntriesToday = 0 then sell("InitXit") next bar at periodLow stop;
if longEntriesToday = 1 then sell("2ndXit") next bar at periodLow - (periodHigh - periodLow) stop;

SetExitOnClose;

The key concepts here are the time constraints and how I count bars to calculate the first 30 – minute channel.  I have had problems with EasyLanguages’s entriesToday function, so I like how I did it here much better.  On the first bar of the day, I set my variable totTrades to EasyLanguages built-in totalTrades (notice the difference in the spelling!)  The keyword TotalTrades is immediately updated when a trade is closed out.  So, I simply subtract my totTrades (the total number of trades at the beginning of the day) from totalTrades.  If totalTrades  is incremented (a trade is closed out) then the difference between the two variables is 1.  I assign the difference of these two values to longEntriesToday.  If longEntriesToday = 1, then I know I have entered long and have been stopped out.  I then say, OK let’s get back long at a better price – the midpoint.  I use the longEntriesToday variable again to determine which exit to use.  With any luck the initial momentum that got us long initially will work its way back into the market for another shot.

It’s Easy to Create  a Strategy Based Indicator

Once you develop a strategy, the indicator that plots entry and exit levels is very easy to derive.  You have already done the math – just plot the values.  Check this out.

//working with 5 minute bars here
//should work with any time frame

input:startTradeTime(0930),numOfBarsHHLL(6);
vars: startTime(0),endTime(0),
barCountToday(0),periodHigh(-99999999),periodLow(99999999);

startTime = sessionStartTime(0,1);
endTime = sessionStartTime(0,1);


if t = calcTime(startTime,barInterval) Then
begin
periodHigh = -99999999;
periodLow = 99999999;
barCountToday = 1;
end;

if barCountToday <= numOfBarsHHLL Then
Begin
periodHigh = maxList(periodHigh,h);
periodLow = minList(periodLow,l);
end;

if barCountToday < numOfBarsHHLL Then
begin
noPlot(1);
noPlot(2);
noPlot(3);
noPlot(4);
End
Else
begin
plot1(periodHigh,"top");
plot2((periodHigh+periodLow)/2,"mid");
plot3(periodLow,"bot");
plot4(periodLow - (periodHigh - periodLow),"2bot");
end;

barCountToday = barCountToday + 1;

So, that’s how you do it.  You can use this code as a foundation for any system that wants to try and reenter at a better price.  You can also use this code to develop your own time based break out strategy.  In my new book, Easing Into EasyLanguage – the Daytrade Edition I will discuss topics very similar to this post.

 

 

 

Helpful Code to Accurately Back Test Day Trading Systems with EasyLanguage

The Clear Out Pattern

This pattern has been around for many years, and is still useful today in a day trading scheme.  The pattern is quite simple:  if today’s high exceeds yesterday’s high by a certain amount, then sell short as the market moves back through yesterday’s high.  There are certain components of yesterday’s daily bar that are significant to day traders – the high, the low, the close and the day traders’ pivot.  Yesterday’s high is considered a level of resistance and is often tested.  Many times the market has just enough momentum to carry through this resistance level, but eventually peters out and then the bears will jump in and push the market down even more.  The opposite is true when the bulls take over near the support level of yesterday’s low.  Here is an example of Clear Out short and buy.

1st the high of yesterday is cleared out and then the low of yesterday.

How Do You Program this Simple Pattern?

The programming of this strategy is rather simple, if you are day trading.  The key components are toggles that track the high and low of the day as the market penetrate the prior day’s high and low.  Once the toggles are flipped on, then order directives can be placed.  A max. trade stop loss can easily be installed via the SetStopLoss(500) function.  You will also want to limit the number of entries, because in a congestive phase, this pattern could fire off multiple times.   Once you intuitively program this,  you will almost certainly run into an issue where a simple “trick” will bail you out.   Remember the code does exactly what you tell it to do. Take a look at these trades.

When Back Testing TradeStation will  convert stop orders to market orders.

On a Back Test, Stop Orders are Converted to Market Orders if Price Exceeds the Stop Level

In these example trades, the first trade is accurate as it buys yesterday’s low + one tick and then gets stopped out.  Once a long is entered, the system logic requires the market to trade back below yesterday’s low before a long another entry is signaled at yesterday’s low.  Here as you can see, the initial buy toggle is set to True and when a long position is entered the buy toggle is turned off.  The market knee jerks back below yesterday’s low and stops out your long position.  Since TradeStation’s paradigm is based on “next bar” execution, a long entry doesn’t occur as the wide bar crosses back up through yesterday’s low.  This is a “bang-bang” situation as it happened very quickly.  In a perfect world, you should have been quickly stopped out and re-entered back long at your price.  However, the toggle isn’t turned back on until the low of the current bar falls a short distance below yesterday’s low.  Since this toggle isn’t set before the market takes off, you don’t get your price.  The toggle is eventually turned on and a buy stop order is issued and you can tell you get a ton of slippage.  You actually buy the next bar’s open after the bar where the toggle was turned on.  I dropped down to a one minute bar and still didn’t get the trade.  A 10 second bar did generate the exit and re-entry at the correct levels, however. It did this because, the 10 second bar turned the toggle on in time for the stop order to be generated accurately.

Using a 10-second bar an accurate exit and entry were generated.

Okay – Can you rely on a 5 minute bar then?

Five minute bar data has been the staple of day trading systems for many years.  However, if you want to test “bang-bang” algorithms you are probably better off dropping down to a N-seconds bar.  However, this strategy as a whole is not “bang-bang” so with a little trick you can get more accurate entries and exits.

What’s the Trick?

In real-time trading, buy-stop orders below the market are rejected. So, the second and third trades that were presented would never have taken place. But, the backtest reflects the trades, and if you include execution costs, the performance might nudge you into not trading a possibly viable system. You can take advantage of the “next bar” paradigm by forcing the close of the current bar to be below a buy-stop price and above a sell short stop price. Does this trade look better? Again in a perfect world, you would have re-entered long on the wide bar that stopped us out. But I guarantee you a fast market condition was in effect. All a broker has to say to you when you complain about a fill is, “Sorry Dude! It was a fast market. Not held!” I can’t tell you how many times I requested a printout of fills over a few seconds from my brokers. It is like when a football coach tosses the RED FLAG. During the Pit Days you had a chance to get a fill cash adjustment because the broker was human and maybe he or she didn’t react quickly enough. But when electronic trade matching took over, an adjustment was highly unlikely. Heck, you sign off on this when you accept the terms of electronic trading.  Fills are rarely made better.  

The second and third trade don’t occur because you force the buy stop order to be valid.

How Does the Trick Affect Performance?

Here are the results over the past four months on different time frame resolutions.

10 Seconds Resolution.

10 seconds bar would be the most accurate if slippage is acceptable.  And that is a big assumption on “bang-bang” days.

1 minute bar resolution.

The one minute bar is close but September is substantially off.  Probably some “bang-bang” action.

5 minute bar resolution with “Trick”

This is close to the 10-second bar result.  Fast market or “bang-bang” trades were reduced or eliminated with the “trick”.

5 minute bar resolution without “Trick.”

Surprisingly, the 5 minute bar without the “Trick” resembles the 10 seconds results.  But we know this is not accurate as trades are fired off in a manner that goes against reality.

The two following table shows the impact of a $15 RT comm./slipp. per trade charge.

Without “Trick” and $15 RT
With “Trick” and $15 RT

Okay, Now That We Have That Figured Out How Do You Limit Trading After a Daily Max. Loss

Another concept I wanted to cover was limiting trades after a certain loss level was suffered on a daily basis.  In the code, I only wanted to enter trades as long as the max. daily loss was less than or equal to $1,000   A fixed stop of $500 on a per trade basis was utilized as well.  So, if you suffered two max. stop losses right off the bat ($1,000), you could still take one more trade.  Now if you had a $500 winner and two $500 losses you could still take another trade.

Ouch! Two max losses, but still could take a third trade.  Ouch again – stupid system.
Should I take that second trade? I just suffered three losses in a row. What to do? What to do? Damn straight you better that trade.

If you are going to trade a system, you better trade it systematically!

Now Onto the Code

//Illustrate trade stoppage after a certain loss has been
//experienced and creating realistic stop orders.

inputs: maxDailyLoss(1000),startTime(0935);
inputs: clrOutBuyPer(.10),clrOutShortPer(.10);

vars: coBuy(False),coShort(False),canTrade(0);
vars: beginOfDayProfit(0),beginOfDayTotTrades(0),mp(0);

if t = startTime then
begin
coBuy = False;
coShort = False;
beginOfDayProfit = netProfit;
beginOfDayTotTrades = totalTrades;
end;

canTrade = iff(t >=startTime and t < sess1EndTime,1,0);


if t >= startTime and h > highD(1) + clrOutBuyPer*(highD(1)-lowD(1)) then
begin
coShort = True;
end;

if t >= startTime and l < lowD(1) - clrOutShortPer*(highD(1)-lowD(1)) then
begin
coBuy = True;
end;

mp = marketPosition;

if canTrade = 1 and coShort and
netProfit >= beginOfDayProfit - maxDailyLoss and
c > highD(1) - minMove/priceScale then
sellShort next bar at highD(1) - minMove/priceScale stop;

if mp = -1 then // toggle to turn off coShort - must wait for set up
begin
coShort = False;
end;

if canTrade = 1 and coBuy and
netProfit >= beginOfDayProfit - maxDailyLoss and
c < lowD(1) + minMove/priceScale then
buy next bar at lowD(1) + minMove/priceScale stop;

if mp = 1 then
begin
coBuy = False;
end;

setStopLoss(500);
setExitOnClose;
Strategy in its Entirety

You need to capture the NetProfit sometime during the day before trading commences.  This block does just that.

if t = startTime then
begin
coBuy = False;
coShort = False;
beginOfDayProfit = netProfit;
beginOfDayTotTrades = totalTrades;
end;
Snippet that captures NetProfit at start of day

Now all you need to do is compare the current netProfit (EL keyword) to the beginOfDayProfit (user variable)If the current netProfit >= beginOfDayProfit – maxDailyLoss (notice I programmed greater than or equal to), then proceed with the next trade.  The rest of the logic is pretty self explanatory, but to drive the point home, here is how I make sure a proper stop order is placed.

if canTrade = 1 and coShort and 
netProfit >= beginOfDayProfit - maxDailyLoss and
c > highD(1) - minMove/priceScale then
sellShort next bar at highD(1) - minMove/priceScale stop;

if mp = -1 then // toggle to turn off coShort - must wait for set up
begin
coShort = False;
end;
Notice how I use the current bars Close - C and How I toggle coShort to False

If You Like This – Make Sure You Get My Hi-Res Edition of Easing Into EasyLanguage

This is a typical project I discuss in the second book in the Easing Into EasyLanguage Trilogy.  I have held over the BLACK FRIDAY special, and it will stay in effect through December 31st.  Hurry, and take advantage of the savings.  If you see any mistakes, or just want to ask me a question, or have a comment, just shoot me an email.

Can Futures Traders Trust Continuous Contracts? [Part – 1]

 Well You Have To, Don’t You?

When I worked at Futures Truth, we tested everything with our Excalibur software.  This software used individual contract data and loaded the entire history (well, the part we maintained) of each contract into memory and executed rollovers at a certain time of the month.  Excalibur had its limitations as certain futures contracts had very short histories and rollover dates had to be predetermined – in other words, they were undynamic.  Over the years, we fixed the short history problem by creating a dynamic continuous contract going back in time for the number of days required for a calculation.  We also fixed the database with more appropriate rollover frequency and dates.  So in the end, the software simulated what I had expected from trading real futures contracts.  This software was originally written in Fortran and for the Macintosh.  It also had limitations on portfolio analysis as it worked its way across the portfolio, one complete market at a time.   Even with all these limitations, I truly thought that the returns more closely mirrored what a trader might see in real time.  Today, there aren’t many, if any, simulation platforms that test on individual contracts.  The main reasons for this are the complexity of the software, and the database management.  However, if you are willing to do the work, you can get close to testing on individual contract data with EasyLanguage.

Step 1 – Get the rollover dates

This is critical as the dates will be used to roll out of one contract and into another.  In this post, I will test a simple strategy on the crude futures.  I picked crude because it rolls every month.   Some data vendors use a specific date to roll contracts, such as Pinnacle data.  In real time trading, I did this as well.  We had a calendar for each month, and we would mark the rollover dates for all markets traded at the beginning of each month.  Crude was rolled on the 11th or 12th of the prior month to expiration.  So, if we were trading the September 2022 contract, we would roll on August 11th.  A single order (rollover spread) was placed to sell (if long) the September contract and buy the October contract at the market simultaneously.  Sometimes we would leg into the rollover by executing two separate orders – in hopes of getting better execution.  I have never been able to find a historic database of when TradeStation performs its rollovers.  When you use the default @CL symbol, you allow TradeStation to use a formula to determine the best time to perform a rollover.  This was probably based on volume and open interest.  TradeStation does allow you to pick several different rollover triggers when using their continuous data.

You can choose type of trigger – (3) Dynamic or (4) Time based.

I am getting ahead of myself, because we can simply use the default @CL data to derive the rollover dates (almost.)  Crude oil is one of those weird markets where LTD (last trade days) occurs before FND (first notice day.)  Most markets will give you a notice before they back up a huge truck and dump a 1000 barrels of oil at your front door.   With crude you have to be Johnny on the spot!  Rollover is just a headache when trading futures, but it can be very expensive headache if you don’t get out in time.  Some markets are cash settled so rollover isn’t that important, but others result in delivery of the commodity.  Most clearing firms will help you unwind an expired contract for a small fee (well relatively small.)  In the good old days your full service broker would give you heads up.  They would call you and say, “George you have to get out of that Sept. crude pronto!”  Some firms would automatically liquidate the offending contract on your behalf – which sounds nice but it could cost you.  Over my 30 year history of trading futures I was caught a few times in the delivery process.   You can determine these FND and LTD from the CME website.  Here is the expiration description for crude futures.

Trading terminates 3 business day before the 25th calendar day of the month prior to the contract month. If the 25th calendar day is not a business day, trading terminates 4 business days before the 25th calendar day of the month prior to the contract month.

You can look this up on your favorite broker’s website or the handy calendars they send out at Christmas.  Based on this description, the Sept. 2022 Crude contract would expire on August 20th and here’s why

  • August 25 is Tuesday
  • August 24 is Monday- DAY1
  • August 21 is Friday – DAY2
  • August 20 is Thursday – DAY3

This is the beauty of a well oiled machine or exchange.  The FND will occur exactly as described.  All you need to do is get all the calendars for the past ten years and find the 25th of the month and count back three business days.  Or if the 25 falls on a weekend count back four business days.  Boy that would be chore, would it not?  Luckily, we can have the data and an  EasyLanguage script do this for us.  Take a look at this code and see if it makes any sense to you.

Case "@CL":
If dayOfMonth(date) = 25 and firstMonthPrint = false then
begin
print(date[3]+19000000:8:0);
firstMonthPrint = true;
end;
If(dayOfMonth(date[1]) < 25 and dayOfMonth(date) > 25 ) and firstMonthPrint = false then
begin
print(date[4]+19000000:8:0);
firstMonthPrint = true;
end;
Code to printout all the FND of crude oil.

I have created a tool to print out the FND or LTD of any commodity futures by examining the date.  In this example, I am using a Switch-Case to determine what logic is applied to the chart symbol.  If the chart symbol is @CL, I look to see if the 25th of the month exists and if it does, I print the date 3 days prior out.  If today’s day of month is greater than 25 and the prior day’s day of month is less than 25, I know the 25th occurred on a weekend and I must print out the date four bars prior.  These dates are FN dates and cannot be used as is to simulate a rollover. You had best be out before the FND to prevent the delivery process.   Pinnacle Date rolls the crude on the 11th day of the prior month for its crude continuous contracts.  I aimed for this day of the month with my logic.  If the FND normally fell on the 22nd of the month, then I should back up either 9 or 10 business days to get near the 11th of the month.   Also I wanted to use the output directly in an EasyLanguage strategy so I modified my output to be exact EasyLanguage.

Case "@CL":
If dayOfMonth(date) = 25 and firstMonthPrint = false then
begin
value1 = value1 + 1;
print("rollArr[",value1:1:0,"]=",date[9]+19000000:8:0,";");
firstMonthPrint = true;
end;
If(dayOfMonth(date[1]) < 25 and dayOfMonth(date) > 25 ) and firstMonthPrint = false then
begin
value1 = value1 + 1;
print("rollArr[",value1:1:0,"]=",date[10]+19000000:8:0,";");
// print(date[4]+19000000:8:0);
firstMonthPrint = true;
end;


// example of output

rollArr[103]=20210312;
rollArr[104]=20210412;
rollArr[105]=20210512;
rollArr[106]=20210614;
rollArr[107]=20210712;
rollArr[108]=20210812;
rollArr[109]=20210913;
rollArr[110]=20211012;
rollArr[111]=20211111;
rollArr[112]=20211210;
rollArr[113]=20220111;
rollArr[114]=20220211;
rollArr[115]=20220314;
rollArr[116]=20220411;
rollArr[117]=20220512;
rollArr[118]=20220610;
rollArr[119]=20220712;
rollArr[120]=20220812;
Code to print our 9 or 10 bars prior to FND in actual EasyLanguage

Now. that I had the theoretical rollover dates for my analysis I had to make sure the data that I was going to use matched up exactly.  As you saw before, you can pick the rollover date for your chart data.   And you can also determine the discount to add or subtract to all prior data points based on the difference between the closing prices at the rollover point.  I played around with the number of days prior to FND and selected non adjusted for the smoothing of prior data.

Actual data I simulated rollovers with.

How did I determine 8 days Prior to First Notice Date?  I plotted different data using a different number of days prior and determined 8 provided a sweet spot between the old and new contract data’s open interest.  Can you see the rollover points in the following chart?  Ignore the trades – these were a beta test.

The Open Interest Valley is the rollover date.

The dates where the open interest creates a valley aligned very closely with the dates I printed out using my FND date finder function.  To be safe, I compared the dates and fixed my array data to match the chart exactly.  Here are two rollover trades – now these are correct.

Using an adjusted continuous contract you would not see these trades.

This post turned out to be a little longer than I thought, so I will post the results of using an adjusted continuous contract with no rollovers, and the results using non-adjusted concatenated contracts with rollovers.  The strategy will be a simple 40/20 bar Donchian entry/exit.  You maybe surprised by the results – stay tuned.

A Tribute to Murray and His Inter-Market Research

Murray Ruggiero’s Inter-Market Research

Well it’s been a year, this month, that Murray passed away.  I was fortunate to work with him on many of his projects and learned quite a bit about inter-market convergence and divergence.  Honestly, I wasn’t that into it, but you couldn’t argue with his results.  A strategy that he developed in the 1990s that compared the Bond market with silver really did stand the test of time.  He monitored this relationship over the years and watched in wane.  Murray replaced silver with $UTY.

The PHLX Utility Sector Index (UTY) is a market capitalization-weighted index composed of geographically diverse public utility stocks.

He wrote an article for EasyLanguage Mastery by Jeff Swanson where he discussed this relationship and the development of inter-market strategies and through statistical analysis proved that these relationships added real value.

I am currently writing Advanced Topics, the final book in my Easing Into EasyLanguage trilogy, and have been working with Murray’s research.  I am fortunate to have a complete collection of his Futures Magazine articles from the mid 1990s to the mid 2000s.  There is a quite a bit of inter-market stuff in his articles.  I wanted, as a tribute and to proffer up some neat code, to show the performance and code of his Bond and $UTY inter-market algorithm.

Here is a version that he published a few years ago updated through June 30, 2022 – no commission/slippage.

Murray’s Bond and $UTY inter-market Strategy

Not a bad equity curve.  To be fair to Murray he did notice the connection between $UTY and the bonds was changing over the past couple of year.  And this simple stop and reverse system doesn’t  have a protective stop.   But it wouldn’t look much different with one, because the system looks at momentum of the primary  data and momentum of the secondary data and if they are in synch (either positively or negatively correlated – selected by the algo) an order is fired off.  If you simply just add a protective stop, and the momentum of the data are in synch, the strategy will just re-enter on the next bar.  However, the equity curve just made a new high  recently.  It has got on the wrong side of the Fed raising rates.  One could argue that this invisible hand has toppled the apple cart and this inter-market relationship has been rendered meaningless.

Murray had evolved his inter-market analysis to include state transitions.  He not only looked at the current momentum, but also at where the momentum had been.  He assigned the transitions of the momentum for the primary and secondary markets a value from one to four and he felt this state transition helped overcome some of the coupling/decoupling of the inter-market relationship.

However,  I wanted to test Murray’s simple strategy with a fixed $ stop and force the primary market to move from positive to negative or negative to positive territory while the secondary market is in the correct relationship.  Here is an updated equity curve.

George’s Adaptation and using a $4500 stop loss

This equity curve was developed  by using a $4500 stop loss.  Because I changed the order triggers, I reoptimized the length of the momentum calculations for the primary and secondary markets.  This curve is only better in the category of maximum draw down.  Shouldn’t we give Murray a chance and reoptimize his momentum length calculations too!  You bet.

Murray Length Optimizations

These metrics were sorted by Max Intraday Draw down.  The numbers did improve, but look at the Max Losing Trade value.  Murray’s later technology,  his State Systems, were a great improvement over this basic system.  Here is my optimization using a slightly different entry technique and a $4500 protective stop.

Standing on the Shoulders of a Giant

This system, using Murray’s overall research, achieved a better Max Draw Down and a much better Max Losing Trade.   Here is my code using the template that Murray provided in his articles in Futures Magazine and EasyLanguage Mastery.

 

// Code by Murray Ruggiero
// adapted by George Pruitt

Inputs: InterSet(2),LSB(0),Type(1),LenTr(4),LenInt(4),Relate(0);
Vars: MarkInd(0),InterInd(0);

If Type=0 Then
Begin
InterInd=Close of Data(InterSet)-CLose[LenInt] of Data(InterSet);
MarkInd=CLose-CLose[LenTr];
end;

If Type=1 Then
Begin
InterInd=Close of Data(InterSet)-Average(CLose of Data(InterSet),LenInt);
MarkInd=CLose-Average(CLose,LenTr);
end;

if Relate=1 then
begin
If InterInd > 0 and MarkInd CROSSES BELOW 0 and LSB>=0 then
Buy("GO--Long") Next Bar at open;
If InterInd < 0 and MarkInd CROSSES ABOVE 0 and LSB<=0 then
Sell Short("GO--Shrt") Next Bar at open;

end;
if Relate=0 then begin
If InterInd<0 and MarkInd CROSSES BELOW 0 and LSB>=0 then
Buy Next Bar at open;
If InterInd>0 and MarkInd CROSSES ABOVE 0 and LSB<=0 then
Sell Short Next Bar at open;
end;

Here the user can actually include more than two data streams on the chart.  The InterSet input allows the user to choose or optimize the secondary market data stream.  Momentum is defined by two types:

  • Type 0:  Intermarket or secondary momentum simply calculated by close of data(2) – close[LenInt] of date(2) and primary momentum calculated by close – close[LenTr]
  • Type 1:   Intermarket or secondary momentum  calculated by close of data(2) – average( close of data2, LenInt)  and primary momentum calculated by close – average(close, LenTr)

The user can also input what type of Relationship: 1 for positive correlation and 0 for negative correlation.  This template can be used to dig deeper into other market relationships.

George’s Modification

I simply forced the primary market to CROSS below/above 0 to initiate a new trade as long the secondary market was pointing in the right direction.

	If InterInd > 0 and MarkInd CROSSES BELOW 0 and LSB>=0 then 
Buy("GO--Long") Next Bar at open;
If InterInd < 0 and MarkInd CROSSES ABOVE 0 and LSB<=0 then
Sell Short("GO--Shrt") Next Bar at open;
Using the keyword CROSSES

This was a one STATE transition and also allowed a protective stop to be used without the strategy automatically re-entering the trade in the same direction.

Thank You Murray – we sure do miss you!

Murray loved to share his research and would want us to carry on with it.  I will write one or two blogs a year in tribute to Murray and his invaluable research.

Using EXCEL VBA to Combine Equity Curves from TradeStation

A Poor Man’s Equity Curve Merger

Sometimes you just want to create a combined equity curve of several markets and for one reason or another you don’t want to use Maestro.  This post will show you an indicator that you can insert into your TradeStation chart/strategies that will output monthly cumulative equity readings.  After that I refresh my VBA skills a little bit by creating a VBA Macro/Script that will take the output and parse it into a table where the different months are the rows and the different market EOM equities, for those months, will be the columns.  Then all the rows will be summed and then finally a chart will be produced.  I will zip the Exel .xlsm and include it at the end of this post.

Part 1:  Output Monthly Data to Print Log

You can determine the end of the month by comparing the current month of the date and the month of the prior date.  If they are different, then you know you are sitting on the first trading day of the new month.  You can then reach back and access the total equity as of yesterday.  If you want you can also track the change in month equity.  Here is the indicator code in EasyLanguage.

// Non plotting indicator that needs to be applied to 
// a chart that also has a strategy applied
// one that produces a number of trades

vars: monthlyEqu(0),priorMonthEqu(0);
vars: totalEquity(0);


if month(date) <> month(date[1]) then
begin
monthlyEqu = totalEquity[1] - priorMonthEqu;
priorMonthEqu = totalEquity[1];
print(getSymbolName,",",month(date[1]):2:0,"-",year(date[1])+1900:4:0,",",monthlyEqu,",",totalEquity);
end;
totalEquity = i_ClosedEquity;
Indicator that exports the EOM equity values

The interesting part of this code is the print statement.  You can use the month and year  functions to extract the respective values from the date bar array.  I use a formatted print to export the month and year without decimals.  Remember 2021 in TradeStation is represented by 121 and all you have to do is add 1900 to get a more comfortable value.  The month output is formatted with :2:0 and the year with :4:0.  The first value in the format notation informs  the computer to allow at least 2 or 4 values for the month  and the year respectively.  The second value following the second colon informs the computer that you do not want any decimals values (:0).  Next insert the indicator into all the charts in your workspace.  Here’s a snippet of the output on one market.  I tested this on six markets and this data was the output generated.  Some of the markets were interspersed and that is okay.  You may have a few months of @EC and then a few months of @JY and then @EC again.

@EC, 7-2008,-5106.24,-5106.24
@EC, 8-2008, 0.00,-5106.24
@EC, 9-2008, 0.00,-5106.24
@EC,10-2008, 0.00,-5106.24
@EC,11-2008, 0.00,-5106.24
@EC,12-2008,25156.26,20050.02
@EC, 1-2009, 0.00,20050.02
@EC, 2-2009, 0.00,20050.02
@EC, 3-2009, 0.00,20050.02
@EC, 4-2009, 0.00,20050.02
@EC, 5-2009, 0.00,20050.02
@EC, 6-2009, 0.00,20050.02
@EC, 7-2009, 0.00,20050.02
@EC, 8-2009, 0.00,20050.02
@EC, 9-2009, 0.00,20050.02
@EC,10-2009, 0.00,20050.02
@EC,11-2009, 0.00,20050.02
@EC,12-2009,7737.51,27787.53
@EC, 1-2010, 0.00,27787.53
@EC, 2-2010, 0.00,27787.53
@EC, 3-2010, 0.00,27787.53
@EC, 4-2010, 0.00,27787.53
@EC, 5-2010, 0.00,27787.53
@EC, 6-2010, 0.00,27787.53
@EC, 7-2010, 0.00,27787.53
@EC, 8-2010, 0.00,27787.53
@EC, 9-2010,6018.76,33806.29
Indicator output

Part 2: Getting the Data into Excel

If you use this post’s EXCEL workbook with the macro you may need to tell EXCEL to forget any formatting that might already be inside the workbook.  Open my workbook and beware that it will inform/warn you that a macro is located inside and that it could be dangerous.  If you want to go ahead and enable the macro go ahead.  On Sheet1 click in A1 and place the letter “G”.  Then goto the Data Menu and then the Data Tools section of the ribbon and click Text to Columns.  A dialog will open and ask you they type of file that best describes your data.  Click the Delimited radio button and then next.  You should see a dialog like this one.

Clear Any Left Over Formatting

Now copy all of the data from the Print-Log and paste it into Column A.  If all goes right everything will be dumped in the appropriate rows and in a single column.

The fields will be dumped into a single column

First select column A and  go back to the Data Menu and the Data Tools on the Ribbon.  Select Delimited and hit next,  Choose comma because we used commas to separate our values.  Click Next again.  Eventually you will get to this dialog.

Make sure you use Date [MDY] for the second column of data.
If you chose Date format for column 2 with MDY, then it will be imported into the appropriate column in a date format.  This makes charting easier.  If all goes well then you will have four columns of data –  a column for Symbol, Date, Delta-EOM and EOM.  Select column B and right click and select Format Cells.

Clean Up column B by formatting cells and customizing the date format

Once you format the B column in the form of  MM-YYYY you will have a date like 9-2007, 10-2007, 11-2007…

Running the VBA Macro/Script

On the Ribbon in EXCEL goto the Developer Tab.  If you don’t see it then you will need to install it.  Just GOOGLE it and follow their instructions.  Once on the Develop Tab goto the Code category and click the Visual Basic Icon.  Your VBA IDE will open and should like very similar to this.

VBA IDE [integrated development environment]
If all goes according to plan after you hit the green Arrow for the Run command your spreadsheet should like similar to this.

EOM table with Months as Rows and Individual Market EOMs as columns

The Date column will be needed to be reformatted again as Date with Custom MM-YYYY format.  Now copy the table by highlighting the columns and rows including the headings and then goto to Insert Menu and select the Charts category.  

This is what you should get.

Merged Equity on Closed Trade Basis

This is the output of the SuperTurtle Trading system tested on the currency sector from 2007 to the present.

VBA Code

I have become very spoiled using Python as it does many things for you by simply calling a function.  This code took my longer to develop than I thought it would, because I had to back to the really old school of programming (really wanted to see if I could do this from scratch) to get this done.  You could of course eliminate some of my code by calling spread sheet functions from within EXCEL.  I went ahead and did it the brute force way just to see if I could do it.

Sub combineEquityFromTS()

'read data from columns
'symbol, date, monthlyEquity, cumulativeEquity - format
'create arrays to hold each column of data
'use nested loops to do all the work
'brute force coding, no objects - just like we did in the 80s

Dim symbol(1250) As String
Dim symbolHeadings(20) As String
Dim myDate(1250) As Long
Dim monthlyEquity(1250) As Double
Dim cumulativeEquity(1250) As Double

'read the data from the cells
dataCnt = 1
Do While Cells(dataCnt, 1) <> ""
symbol(dataCnt) = Cells(dataCnt, 1)
myDate(dataCnt) = Cells(dataCnt, 2)
monthlyEquity(dataCnt) = Cells(dataCnt, 3)
cumulativeEquity(dataCnt) = Cells(dataCnt, 4)
dataCnt = dataCnt + 1
Loop
dataCnt = dataCnt - 1

'get distinct symbolNames and use as headers
symbolHeadings(1) = symbol(1)
numSymbolheadings = 1
For i = 2 To dataCnt - 1
If symbol(i) <> symbol(i + 1) Then
newSymbol = True
For j = 1 To numSymbolheadings
If symbol(i + 1) = symbolHeadings(j) Then
newSymbol = False
End If
Next j
If newSymbol = True Then
numSymbolheadings = numSymbolheadings + 1
symbolHeadings(numSymbolheadings) = symbol(i + 1)
End If
End If
Next i

'Remove duplicate months in date array
'have just one column of month end dates

Cells(2, 7) = myDate(1)
dispRow = 2
numMonths = 1
i = 1
Do While i <= dataCnt
foundDate = False
For j = 1 To numMonths
If myDate(i) = Cells(j + 1, 7) Then
foundDate = True
End If
Next j
If foundDate = False Then
numMonths = numMonths + 1
Cells(numMonths + 1, 7) = myDate(i)
End If
i = i + 1
Loop
'put symbols across top of table
'put "date" and "cumulative" column headings in proper
'locations too

Cells(1, 7) = "Date"
For i = 1 To numSymbolheadings
Cells(1, 7 + i) = symbolHeadings(i)
Next i

numSymbols = numSymbolheadings
Cells(1, 7 + numSymbols + 1) = "Cumulative"
'now distribute the monthly returns in their proper
'slots in the table
dispRow = 2
dispCol = 7
For i = 1 To numSymbols
For j = 2 To numMonths + 1
For k = 1 To dataCnt
foundDate = False
If symbol(k) = symbolHeadings(i) And myDate(k) = Cells(j, 7) Then
Cells(dispRow, dispCol + i) = cumulativeEquity(k)
dispRow = dispRow + 1
Exit For
End If
'for later use
'If j > 1 Then
' If symbol(k) = symbolHeadings(i) And myDate(k) < Cells(j, 7) And myDate(k) > Cells(j - 1, 7) Then
' dispRow = dispRow + 1
' End If
'End If
Next k
Next j
dispRow = 2
Next i
'now accumulate across table and then down
For i = 1 To numMonths
cumulative = 0
For j = 1 To numSymbols
cumulative = cumulative + Cells(i + 1, j + 7)
Next j
Cells(i + 1, 7 + numSymbols + 1) = cumulative
Next i
End Sub

This a throwback to the 80s BASIC on many of the family computers of that era.  If you are new to VBA you can access cell values by using the keyword Cells and the row and column that points to the data.   The first thing you do is create a Module named combineEquityFromTS and in doing so it will create a Sub combineEquityFromTS() header and a End Sub footer.  All of your code will be squeezed between these two statements.  This code is ad hoc because I just sat down and started coding without much forethought.  

Use DIM to Dimension an Arrays

I like to read the date from the cells into arrays so I can manipulate the data internally.  Here I create five arrays and then loop through column one until there is no longer any data.  The appropriate arrays are filled with their respective data from each row.

Dimension and Load Arrays

Once the data is in arrays we can start do parse it.  The first thing I want is to get the symbolHeadings or markets.  I know the first row has a symbol name so I go ahead and put that into the symbolHeadings array.  I kept track of the number of rows in the data with the variable dataCnt.  Here I use  nested loops to work my way down the data and keep track of new symbols as I encounter them.  If the symbol changes values, I then check my list of stored symbolHeadings and if the new symbol is not in the list I add it.

Parse different symbols from all data

Since all the currencies will have the same month values I wanted to compress all the months into a single discrete month list.  This isn’t really all that necessary since we could have just prefilled the worksheet with monthly date values going back to 2007.  This algorithm is similar to the one that is used to extract the different symbols.  Except this time, just for giggles, I used a Do While Loop.

Squash Monthly List Down

As well as getting values from cells you can also put values into them.  Here I run through the list of markets and put them into Cells(1, 7+i).  When working with cells you need to make sure you get the offset correct.  Here I wanted to put the market names in Row A and Columns: H, I, J, K, L, M.

  • Column H = 8
  • Column I = 9
  • Column J = 10
  • Column K =11
  • Column L = 12
  • Column M = 13
Put Markets as Column Headers

Cells are two dimensional arrays.  However if you are going to use what is on the worksheet make sure you are referencing the correct data.  Here I introduce dispRow and dispCol as the anchor points where the data I need to reference starts out.

Three nested loops – Whopee.

Here I first parse through each symbol and extract the EOM value that matches the symbol name and month-year value.  So if I am working on @EC and I need the EOM for 07-2010, I fist loop through the month date values and compare the symbol AND myDate (looped through with another for-loop) with the month date values.  If they are the same then I dump the value in the array on to the spreadsheet.  And yes I should have used this:

For j = dispRow to numMonths-1

Instead of –

For j = 2 to numMonths-1

Keeping arrays in alignment with Cells can be difficult.  I have a hybrid approach here.  I will clean this up later and stick just with arrays and only use Cells to extract and place data.  The last thing you need to do is sum each row up and store that value in the Cumulative column.

Across and then Down to sum accumulated monthly returns

Conclusion

This was another post where we relied on another application to help us achieve our objective.   If you are new to EXCEL VBA (working with algorithms that generate trades) you can find out more in my Ultimate Algorithmic Trading System Toolbox book.  Even if you don’t get the book this post should get you started on the right track.

Excel Workbooks – One Empty with Macro and one Filled With this Post Data.

 

Tracking Last EntryPrice While Pyramiding on Minute Bars

EasyLanguage’s EntryPrice Doesn’t Cut the Mustard

In writing the Hi-Res edition of Easing Into EasyLanguage I should have included this sample program.  I do point out the limitations of the EntryPrice keyword/function in the book.  But recently I was tasked to create a pyramiding scheme template that used minute bars and would initiate a position with N Shares and then pyramid up to three times by adding on N Shares at the last entry price + one 10 -Day ATR measure as the market moves in favor of the original position.  Here is an example of just such a trade.

Pyramid 3 Times After Initial Trade Entry. Where’s the EntryPrice?

EntryPrice only contains the original entry price.  So every time you add on a position, the EntryPrice doesn’t reflect this add on price.  I would like to be able to index into this keyword/function and extract any EntryPrice.  If you enter at the market, then you can keep track of entry prices because a market order is usually issued from an if-then construct:

//Here I can keep track of entry prices because I know
//exactly when and where they occur.

if c > c[1] and value1 > value2 then
begin
buy("MarketOrder") next bar at market;
lastEntryPrice = open of next bar;
end;
Last Entry Price tracking is easy if using Market Orders

But what if you are using a stop or limit order.  You don’t know ahead of time where one of these types of orders will hit up.  It could be the next bar or it could be five bars later or who knows.

AvgEntryPrice Makes Up for the Weakness of EntryPrice

AvgEntryPrice is a keyword/function that  returns the average of the entries when pyramiding.  Assume you buy at 42.00 and pyramid the same number of shares at 46.50 – AvgEntryPrice will be equal to (42.00 + 46.50) / 2 = 44.25.  With this information you can determine the two entry prices.  You already know the original price.  Take a look at this code.

// remember currentShares and avgEntryPrice ARE EasyLanguage Keywords/Functions
if mp[1] = mp and mp = -1 and currentShares > curShares then
begin
totShorts = totShorts + 1;
if currentShares > initShares then
begin
lastEntryPrice = totShorts * avgEntryPrice - entryPriceSums;
entryPriceSums = entryPriceSums + lastEntryPrice;
print(d," Short addon ",lastEntryPrice," ",totShorts," ",avgEntryPrice," ",entryPriceSums);
end;
end;
Calculating the true LastEntryPrice

Remember currentShares is a keyword/function and it is immediately updated when more shares are added or taken off.  CurShares is my own variable where I keep track of the prior  currentShares , so if currentShares (real number of shares) is greater than the prior curShares (currentShares) then I know 100%, a position has been pyramided as long the the mp stays the same.  If currentShares increases and mp stays constant, then you can figure out the last entry price where the pyramid takes place.  First you tick totShorts up by 1.  If currentShares > initShares, then you know you are pyramiding so

lastEntryPrice = totShorts * avgEntryPrice – entryPriceSums

Don’t believe me.  Let’s test it.  Remember original entry was 42.00 and the add on was at 46.50.  TotShorts now equals 2.

  1. Initial entryPrice = 42.00 so entryPriceSums is set to 42.00
  2. After pyramiding avgEntryPrice is set to 44.25
  3. lastEntryPrice = 2 * 44.25 – 42.00 = 46.50
  4. entryPriceSums is then set to 42.00 + 46.50 or 88.50

So every time you add on a position, then you flow through this logic and you can keep track of the actual last entry price even if it is via a limit or stop order.

But wait there is more.  This post is also a small glimpse into what I will be writing about in the Easing Into EasyLanguage:  Advanced Topics.  This system definitely falls into what I discussed in the Hi-Res Edition.  Here is where we tip over into Advanced Topics.  The next book is not about creating dialogs or trading apps using OOEL (object oriented EasyLanguage), but we do use some of those topics to do some rather complicated back testing things.

Now that we know how to calculate the lastEntryPrice wouldn’t it be really cool if we could keep track of all of the entryPrices during the pyramid stream.   If I have pyramided four times, I would like to know entryPrice 1, entryPrice 2, entryPrice 3 and entryPrice 4.

EntryPrice Vector

Dr. VectorLove or How I Learned to Stop Worrying and Love Objects

I have discussed vectors before but I really wanted to discuss them more.  Remember Vectors are just lists or arrays that don’t need all the maintenance.  Yes you have to create them which can be a pain, but once you learn and forget it twenty times it starts to sink in.  Or just keep referring back to this web page.


Using elsystem.collections;

vars: Vector entryPriceVector(Null);

once Begin
entryPriceVector = new Vector;
end;
The Bare Minimum to Instantiate a Vector
  1. Type – “Using elsystem.collections; “
  2. Declare entryPriceVector as a Vector and set it equal to Null
  3. Use Once and instantiate entryPriceVector by using the keyword new < object type>;

A Vector is part of elsystem’s collection objects.  Take a look at this updated code,

if mp[1] = mp and mp = -1 and currentShares > curShares then
begin
totShorts = totShorts + 1;
if currentShares > initShares then
begin
lastEntryPrice = totShorts * avgEntryPrice - entryPriceSums;
entryPriceVector.push_back(lastEntryPrice);
entryPriceSums = entryPriceSums + lastEntryPrice;
print(d," Short addon ",lastEntryPrice," ",entryPrice," ",entryPrice(1)," ",totShorts," ",avgEntryPrice," ",entryPriceSums," ",entryPriceVector.back() astype double," ",entryPriceVector.count asType int);
if not(entryPriceVector.empty()) then
begin
for m = 0 to entryPriceVector.count-1
begin
print(entryPriceVector.at(m) astype double);
end;
end;
end;
end;
LastEntryPrice and Pushing It onto the Vector and Then Printing Out the Vector

After the lastEntryPrice is calculated it is pushed onto the entryPriceVector using the function (method same thing but it is attached to the Vector class).push_back(lastEntryPrice);

entryPriceVector.push_back(lastEntryPrice);

So every time a new lastEntryPrice is calculated it is pushed onto the Vector at the back end.  Now if the entryPriceVector is not empty then we can print its contents by looping and indexing into the Vector.

if not(entryPriceVector.empty()) then
begin
     for m = 0 to entryPriceVector.count-1
     begin
          print(entryPriceVector.at(m) astype double);
     end;
end;
Looping through a Vector and Printing Out its Contents

Remember if you NOT a boolean value then it turns it to off/on or just the opposite of the boolean valueIf entryPriceVector is not empty then proceed.  entryPriceVector.count holds the number of values stuffed into the vectorYou can index into the Vector by using .at(m),  If you want to print out the value of the Vector .at(m), then you will need to typecast the Vector object as what ever it is holding.  We know we are pushing numbers with decimals (double type) onto the Vector so we know we can evaluate them as a double type.  Just remember you have to do this when printing out the values of the Vector.

Okay you can see where we moved into an Advanced Topics area with this code.  But it really becomes useful when trying to overcome some limitations of EasyLanguage.  Remember keep an eye open for Advanced Topics sometime in the Spring.