Category Archives: Must Know

RMI Trend Sniper in EasyLanguage

RMI Trend Sniper Indicator – Described on ProRealTime in PR Code.

RMI Trend Sniper Indicator – Indicators – ProRealTime

RMI Trend Sniper: An Innovative Trading Indicator

The following is from the RealCode website – I have just copied and pasted this here.  Here is the header information that provides credit to the original programmer.

//PRC_RMI Trend Sniper
//version = 0
//26.03.24
//Iván González @ www.prorealcode.com
//Sharing ProRealTime knowledge

Here is the description of the Indicator via ProRealCode.  Please check out the website for further information regarding the indicator and how to use it.

The RMI Trend Sniper indicator is designed to identify market trends and trading signals with remarkable precision.

This tool combines the analysis of the Relative Strength Index (RSI) with the Money Flow Index (MFI) and a unique approach to range-weighted moving average to offer a comprehensive perspective on market dynamics.

Configuration and Indicator Parameters

The RMI Trend Sniper allows users to adjust various parameters according to their trading needs, including:

  • RMI Length: Defines the calculation period for the RMI.
  • Positive and Negative Momentum (Positive above / Negative below): Sets thresholds to determine the strength of bullish and bearish trends.
  • Range MA Visualization (Show Range MA): Enables users to visualize the range-weighted moving average, along with color indications to quickly identify the current market trend.
Cool Shading – right?

Many of my clients ask me to convert indicators from different languages.  One of my clients came across this from ProRealCode and asked me to convert for his MulitCharts.  Pro Real code is very similar to EasyLanguage with a few exceptions.  If you are savvy in EL, then I think you could pick up PRC quite easily.  Here it is.  It is a trend following indicator.  It is one of a few that I could not find the Easylanguage equivalent so I thought I would provide it.  Play around with it and let me know what you think.  Again, all credit goes to:

//Iván González @ www.prorealcode.com
//Sharing ProRealTime knowledge
 


inputs:Length(14),//RMI Length
pmom(66),//Positive above
nmom(30);//Negative below

//-----RSI and MFI calculation-----------------------------//

vars: alpha(0),src1(0),src2(0),up(0),down(0),myrsi(0),seed(True);

alpha = 1/length;
//-----Up
src1 = maxList(close-close[1],0);
if seed then
up = average(src1,length)
else
up = alpha*src1 + (1-alpha)*up[1];

//-----Down
src2 = -1 * minList(close-close[1],0);
if seed then
down = average(src2,length)
else
down = alpha*src2 + (1-alpha)*down[1];

seed = False;

//-----Rsi
if down = 0 then
myrsi = 100
else if up = 0 then
myrsi = 0
else
myrsi = 100 - (100/(1+up/down));
vars: mfiVal(0),rsimfi(0),bpmom(False),bnmom(False),positive(0),negative(0),ema(0);
//-----MFI
mfiVal = moneyFlow(length);
//-----RsiMfi
rsimfi = (myrsi+mfiVal)/2;
//----------------------------------------------------------//
//-----Long Short Conditions--------------------------------//
ema = average(c,5);

bpmom = rsimfi[1] < pmom and rsimfi > pmom and rsimfi > nmom and (ema-ema[1])>0;
bnmom = rsimfi<nmom and (ema-ema[1])<0;

if bpmom then
begin
positive = 1;
negative = 0;
end
else if bnmom then
begin
positive = 0;
negative = 1;
end;

//----------------------------------------------------------//
//------Calculate RWMA--------------------------------------//
vars: band(0),band20(0),barRange(0),weight(0),sum(0),twVal(0),rwma(0);

band = minList(avgtruerange(30)*0.3,close*(0.3/100));
band20 = band[20]/2*8;
barRange = high-low;

weight = BarRange/summation(BarRange,20);
sum = summation(close*weight,20);
twVal = summation(weight,20);
rwma = sum/twVal;

vars: r(0),g(0),b(0);

if positive = 1 then
begin
rwma = rwma-band;
r=0;
g=188;
b=212;
end
else if negative = 1 then
begin
rwma = rwma+band;
r=255;
g=82;
b=82;
end
else
rwma = 0;

//------------------------------------------------------------//
//-----Calculate MA bands-------------------------------------//
vars: mitop(0),mibot(0);

mitop = rwma+band20;
mibot = rwma-band20;


plot1(mitop,"TOP");
plot2((mitop+mibot)/2,"TOP-BOT");
plot3((mitop+mibot)/2,"BOT-TOP");
plot4(mibot,"BOT");
if positive = 1 then
begin
plot5(rwma,"Pos",GREEN);
noPlot(plot4);
end;
if negative =1 then
begin
plot6(rwma,"Neg",RED);
noPlot(plot3);
end;
Ignore the RGB Color Codes

 

Getting Creative to Shade Between Points on the Chart

TradeStation doesn’t provide an easy method to do shading, so you have to get a little creative.  The plot TOP is of type Bar High with the thickest line possible.  The plot TOP-BOT (bottom of top) is of type Bar Low.  I like to increase transparency as much as possible to see what lies beneath the shading . The BOT-TOP (top of bottom) is Bar High and BOT is Bar Low.  Pos and Neg are of type Point.  I have colored them to be GREEN or RED.

Indicator Settings.

Happy New Year!

Should you use a profit taking algorithm in your Trend Following system?

If letting profits run is key to the success of a trend following approach, is there a way to take profit without diminishing returns?

Most trend following approaches win less than 40% of the time.   So, the big profitable trades are what saves the day for this type of trading approach.  However, it is pure pain to simply sit there and watch a large profit erode, just because the criteria to exit the trade takes many days to be met.

Three methods to take a profit on a Trend Following algorithm

  1.  Simple profit objective – take a profit at a multiple of market risk.
  2.  Trail a stop (% of ATR) after a profit level (% of ATR) is achieved.
  3. Trail a stop (Donchian Channel) after a profit level (% of ATR) is achieved.

Use an input switch to determine which exit to incorporate

Inputs: initCapital(200000),rskAmt(.02),
useMoneyManagement(False),exitLen(13),
maxTradeLoss$(2500),
// the following allows the user to pick
// which exit to use
// 1: pure profit objective
// exit1ProfATRMult allows use to select
// amount of profit in terms of ATR
// 2: trailing stop 1 - the user can choose
// the treshhold amount in terms of ATR
// to be reached before trailing begins
// 3: trailing stop 2 - the user can chose
// the threshold amount in terms of ATR
// to be reached before tailing begins
whichExit(1),
exit1ProfATRMult(3),
exit2ThreshATRMult(2),exit2TrailATRMult(1),
exit3ThreshATRMult(2),exit3ChanDays(5);
Exit switch and the parameters needed for each switch.

The switch determines which exit to use later in the code.  Using inputs to allow the user to change via the interface also allows us to use an optimizer to search for the best combination of inputs.  I used MultiCharts Portfolio Trader to optimize across a basket of 21 diverse markets.  Here are the values I used for each exit switch.

MR = Market risk was defined as 2 X avgTrueRange(15).

  • Pure profit objective -Multiple from 2 to 10 in increments of 0.25.  Take profit at entryPrice + or – Profit Multiple X MR
  • Trailing stop using MR – Profit Thresh Multiple from 2 to 4 in increments of 0.1.  Trailing Stop Multiple from 1 to 4 in increments of 0.1.
  • Trailing stop using MR and Donchian Channel – Profit Thresh Multiple from 2 to 4 in increments of 0.1.  Donchian length from 3 to 10 days.

Complete strategy code incorporating exit switch.  This code is from Michael Covel’s 2005 Trend Following book (Covel, Michael. Trend Following: How Great Traders Make Millions in Up or Down Markets. FT Press, 2005.)  This strategy is highlighted in my latest installment in my Easing into EasyLanguage series – Trend Following edition.


vars:buyLevel(0),shortLevel(0),longExit(0),shortExit(0);

Inputs: initCapital(200000),rskAmt(.02),
useMoneyManagement(False),exitLen(13),
maxTradeLoss$(2500),whichExit(1),
exit1ProfATRMult(3),
exit2ThreshATRMult(2),exit2TrailATRMult(1),
exit3ThreshATRMult(2),exit3ChanDays(5);

Vars: marketRisk(0), workingCapital(0),
marketRisk1(0),marketRisk2(0),
numContracts1(0),numContracts2(0);

//Reinvest profits? - uncomment the first line and comment out the second
//workingCapital = Portfolio_Equity-Portfolio_OpenPositionProfit;
workingCapital = initCapital;


buyLevel = highest(High,89) + minMove/priceScale;
shortLevel = lowest(Low,89) - minMove/priceScale;
longExit = lowest(Low,exitLen) - minMove/priceScale;
shortExit = highest(High,exitLen) + minMove/priceScale;

marketRisk = avgTrueRange(15)*2*BigPointValue;
marketRisk1 =(buyLevel - longExit)*BigPointValue;
marketRisk2 =(shortExit - shortLevel)*BigPointValue;
marketRisk1 = minList(marketRisk,marketRisk1);
marketRisk2 = minList(marketRisk,marketRisk2);

numContracts1 = (workingCapital * rskAmt) /marketRisk1;
numContracts2 = (workingCapital * rskAmt) /marketRisk2;

if not(useMoneyManagement) then
begin
numContracts1 = 1;
numContracts2 =1;
end;

numContracts1 = maxList(numContracts1,intPortion(numContracts1)); {Round down to the nearest whole number}
numContracts2 = MaxList(numContracts2,intPortion(numContracts1));


if c < buyLevel then buy numContracts1 contracts next bar at buyLevel stop;
if c > shortLevel then Sellshort numContracts2 contracts next bar at shortLevel stop;

buytocover next bar at shortExit stop;
Sell next bar at longExit stop;

vars: marketRiskPoints(0);
marketRiskPoints = marketRisk/bigPointValue;
if marketPosition = 1 then
begin
if whichExit = 1 then
sell("Lxit-1") next bar at entryPrice + exit1ProfATRMult * marketRiskPoints limit;
if whichExit = 2 then
if maxcontractprofit > (exit2ThreshATRMult * marketRiskPoints ) * bigPointValue then
sell("Lxit-2") next bar at entryPrice + maxContractProfit/bigPointValue - exit2TrailATRMult*marketRiskPoints stop;
if whichExit = 3 then
if maxcontractprofit > (exit3ThreshATRMult * marketRiskPoints ) * bigPointValue then
sell("Lxit-3") next bar at lowest(l,exit3ChanDays) stop;
end;

if marketPosition = -1 then
begin
if whichExit = 1 then
buyToCover("Sxit-1") next bar at entryPrice - exit1ProfATRMult * marketRiskPoints limit;
if whichExit = 2 then
if maxcontractprofit > (exit2ThreshATRMult * marketRiskPoints ) * bigPointValue then
buyToCover("Sxit-2") next bar at entryPrice - maxContractProfit/bigPointValue + exit2TrailATRMult*marketRiskPoints stop;
if whichExit = 3 then
if maxcontractprofit > (exit3ThreshATRMult * marketRiskPoints ) * bigPointValue then
buyToCover("Sxit-3") next bar at highest(h,exit3ChanDays) stop;
end;

setStopLoss(maxTradeLoss$);

Here’s the fun code from the complete listing.

vars: marketRiskPoints(0);
marketRiskPoints = marketRisk/bigPointValue;
if marketPosition = 1 then
begin
if whichExit = 1 then
sell("Lxit-1") next bar at entryPrice + exit1ProfATRMult * marketRiskPoints limit;
if whichExit = 2 then
if maxContractProfit > (exit2ThreshATRMult * marketRiskPoints ) * bigPointValue then
sell("Lxit-2") next bar at entryPrice + maxContractProfit/bigPointValue - exit2TrailATRMult*marketRiskPoints stop;
if whichExit = 3 then
if maxContractProfit > (exit3ThreshATRMult * marketRiskPoints ) * bigPointValue then
sell("Lxit-3") next bar at lowest(l,exit3ChanDays) stop;
end;

if marketPosition = -1 then
begin
if whichExit = 1 then
buyToCover("Sxit-1") next bar at entryPrice - exit1ProfATRMult * marketRiskPoints limit;
if whichExit = 2 then
if maxContractProfit > (exit2ThreshATRMult * marketRiskPoints ) * bigPointValue then
buyToCover("Sxit-2") next bar at entryPrice - maxContractProfit/bigPointValue + exit2TrailATRMult*marketRiskPoints stop;
if whichExit = 3 then
if maxContractProfit > (exit3ThreshATRMult * marketRiskPoints ) * bigPointValue then
buyToCover("Sxit-3") next bar at highest(h,exit3ChanDays) stop;
end;

The first exit is rather simple – just get out on a limit order at a nice profit level.  The second and third exit mechanisms are a little more complicated.  The key variable in the code is the maxContractProfit keyword.  This value stores the highest level, from a long side perspective, reached during the life of the trade.  If max profit exceeds the exit2ThreshATRMult, then trail the apex by exit2TrailATRMult.  Let’s take a look at the math from a long side trade.

if maxContractProfit > (exit2ThreshATRMult * marketRiskPoints ) * bigPointValue

Since maxContractProfit is in dollar you must convert the exit2ThreshATRMult X marketRiskPoints into dollars as well.  If you review the full code listing you will see that I convert the dollar value, marketRisk, into points and store the value in marketRiskPoints.  The conversion to dollars is accomplished by multiplying the product by bigPointValue.

sell("Lxit-2") next bar at
entryPrice + maxContractProfit / bigPointValue - exit2TrailATRMult * marketRiskPoints stop;

I know this looks complicated, so let’s break it down.  Once I exceed a certain profit level, I calculate a trailing stop at the entryPrice plus the apex in price during the trade (maxContractProfit / bigPointValue) minus the exit2TrailATRMult X marketRiskPoints. If the price of the market keeps rising, so will the trailing stop.  That last statement is not necessarily true, since the trailing stop is based on market volatility in terms of the ATR.  If the market rises a slight amount, and the ATR increases more dramatically, then the trailing stop could actually move down.  This might be what you want.  Give the market more room in a noisier market.  What could you do to ratchet this stop?  Mind your dollars and your points in your calculations.

The third exit uses the same profit trigger, but simply installs an exit based on a shorter term Donchian channel.  This is a trailing stop too, but it utilizes a chart point to help define the exit price.

Results of the three exits

Exit 1 – Pure Profit Objective

Take a profit on a limit order once profit reaches a multiple of market risk aka 2 X ATR(15).

Pure profit object. Profit in terms of ATR or perceived market risk.

The profit objective that proved to be the best was using a multiple of 7.  A multiple of 10 basically negates the profit objective.   With this system several profit objective multiples seemed to work.

Exit – 2 – Profit Threshold and Trailing Stop in terms of ATR or market risk

Trail a stop a multiple of ATR after a multiple of ATR in profit is reached.

Trailing Stop using ATR
3-D view of parameters
3D view of parameter pairs

This strategy liked 3 multiples of ATR of profit before trailing and applying a multiple of 1.3 ATR as a stop.

Like I said in the video, watch out for 1.3 as you trailing amount multiple as it seems to be on a mountain ridge.

Exit – 3 – Profit Threshold in terms of ATR or market risk and a Donchain Channel trailing stop

Trail a stop using a Donchian Channel after a multiple of ATR in profit is reached.  Here was a profit level is reached, incorporate a tailing stop at the lowest low or the highest high of N days back.

Using Donchian Channel as trailing stop.
3-D view of parameters
3D view of parameters for Exit 3.

Conclusion

The core strategy is just an 89-day Donchian Channel for entry and a 13-Day Donchian Channel for exit.  The existing exit is a trailing exit and after I wrote this lengthy post, I started to think that a different strategy might be more appropriate.  However, as you can see from the contour charts, using a trailing stop that is closer than a 13-day Donchian might be more productive.   From this analysis you would be led to believe the ATR based profit and exit triggers (Exit #2) is superior.  But this may not be the case for all strategies.  I will leave this up to you to decide.  Here is the benchmark performance analysis with just the core logic.

Core logic results.

If you like this type of explanation and code, make sure you check at my latest book at amazon.com.  Easing into EasyLanguage – Trend Following Edition.

Buy in November, Sell in May Strategy Framework

Thanks to Jeff Swanson for the basis of this post

I like to post something educational at least once a month.  Sometimes, it’s difficult to come up with stuff to write about.  Jeff really got me thinking with his Buy November… post.  Check out his post “Riding the Market Waves:  How to Surf Seasonal Trends to Trading Success.”  Hopefully you have read his post and now have returned.  As you know, the gist of his post was to buy in November and sell in May.  Jeff was gracious enough to provide analysis, source and suggestions for improvement for this base strategy.

Why Change Jeff’s Code to a Framework?

I found Jeff’s post most intriguing, so the first think I start thinking about is how could I optimize the buy and sell months, a max loss, the three entry filters that he provided and in addition add a sell short option.  If you have read my books, you know I like to develop frameworks for further research when I program an algorithm or strategy.  Here is how I developed the framework:

  1. Optimize the entry month from January to December or 1 to 12.
  2. Optimize the exit month from January to December or 1 to 12.
  3. Optimize to go long or go short or 1 to 2 (to go short any number other than 1 really).
input: startMonth(11),endMonth(5),
longOrShort(1),


currentMonth = Month(Date of tomorrow);
If currentMonth = startMonth and mp = 0 and entriesThisMonth = 0 Then
begin
// a trade can only occur if canBuy is True - start month is active as
// long as the filtering allows it. Until the filter is in alignment
// keep looking for a trading during the ENTIRE startMonth
if longOrShort = 1 and canBuy then
entriesThisMonth = 1;
if longOrShort = 1 and canBuy then
buy("Buy Month") iShares contracts next bar at market;
if longOrShort <> 1 and canShort then
sellShort("Short Month") iShares contracts next bar at market;
if longOrShort = -1 and canShort then
entriesThisMonth = 1;
end;

if CurrentMonth = endMonth Then
begin
if longOrShort = 1 then
sell("L-xit Month") currentShares contracts next bar at market
else
buyToCover("S-xit Month") currentShares contracts next bar at market;
end;

if mp = 1 then
sell("l-xitMM") next bar at entryPrice - maxTradeRisk/bigPointValue stop;
if mp =-1 then
buyToCover("s-xitMM") next bar at entryPrice + maxTradeRisk/bigPointValue stop;
Snippet of the bones with extra flavor to enter and exit on certain months

You can see that I have provided the three inputs:

  1. startMonth
  2. endMonth
  3. longOrShort

I get the currentMonth by peeking at the date of tomorrow and passing this date to the month function.  If tomorrow is the first day of the month that I want to enter a long or short and the current market position (mp), and entriesThisMonth = 0, then a long or short position will be initiated.  If the filters I describe a little later allow it, I know that I will be executing a trade tomorrow, and I can go ahead assign a 1 to entries this month.  Why do I do this?  Just wait and you will see.   Long entries depend on the variable longOrShort being equal to 1 and the toggle canBuy set to True.  What is canBuy.  Just wait and you will see.  The sell short is similar, but conversely longOrShort needs to not equal 1.  In addition, canShort needs to be true too.

If the currentMonth = endMonth, then based on the market position a sell or a buy to cover will be executed.

How to add filters to Determine canBuy and canShort

inputs: 
useMACDFilter(1), MACDFast(9), MACDSlow(26), MACDAvgLen(9), MACDLevel(0),
useMAFilter(0), MALength(30),
useRSIFilter(0), RSILength(14), RSILevel(50)

RSIVal = rsi(close,RSILength);
MAVal = xAverage(close,MALength);
MACDVal = macd(close,MACDFast,MACDSlow);
MACDAvg = xAverage(MACDVal,MACDAvgLen);

if useMACDFilter = 1 then
begin
canBuy = MACDVal > MACDLevel;
canShort = MACDVal < MACDLevel;
end;

if useMAFilter = 1 then
begin
canBuy = close > MAVal and canBuy;
canShort = close < MAVal and canShort;
end;

if useRSIFilter = 1 then
begin
canBuy = RSIVal > RSILevel and canBuy;
canShort = RSIVal < RSILevel and canShort;
end;
Calculate Filter Components and then test them

You cannot optimize a True to False toggle, but you can optimize 0 for off and 1 for on.  Here the useFilterName inputs are initially set to 0 or off.  Each filter indicator has respective inputs so that the filters can be calculated with the user’s input.  If the filters are equal to one, then a test to turn canBuy and canShort to on or off is laid out in the code.  Each test depends on either the state of price compared to the indicator value, or the indicator’s relationship to a user defined level or value.

Will this code test all the combination of the filters?

Yes!  F1 is Filter 1 and F2 is Filter 2 and F3 is Filter 3.  By optimizing each filter from 0 to 1, you will span this search space.

  • F1 = On; F2 = Off; F3 = Off
  • F1 = On; F2 = On; F3 = Off
  • F1 = On; F2 = On; F3 = On
  • F1 = Off; F2 = On; F3 = Off
  • F1 = Off; F2 = On; F3 = On
  • F1 = Off; F2 = Off: F3 = On
  • F1 = On; F2 = Off; F3 = On

You will notice I initially set canBuy and canShort to True and then turn them off if an offending filter occurs.  Notice how I AND the results for Filter 2 and Filter 3 with canBuy or canShort.  Doing this allows me to cascade the filter combinations.  I do want to test when all filters are in alignment.  In other words, they must all be True to initiate a position.

Should the Filters be Active During the Entire Entry Month?

What if the first day of the month arrives and you can’t initiate a trade due to a conflict of one of the filters.  Should we allow a trade later in the entry month if the filters align properly?  If we are testing 25 years of history and allow for entry later on in the month, we could definitely generate as close to 25 trades as possible.   This line of code keeps the potential of a trade open for the entire month.


// only set entriesThisMonth to true
// when all the stars align - might enter a long
// trade on the last day of the month

if longOrShort = 1 and canBuy then
entriesThisMonth = 1;
Keep the entire start month active

Some Tricky Code

I wanted to allow a money management exit on a contract basis.  I had to devise some code that would not allow me to reenter the startMonth if I got stopped out prematurely in the startMonth (the same month as entry.)

if entriesThisMonth = 1 and monthOfTomorrow <> startMonth then
entriesThisMonth = 0;
This code resets entriesThisMonth

If a position is initiated, I know entriesThisMonth will be set to one.  If I enter into another month that is not the startMonth then entriesThisMonth is set to 0.  This prevents reentry in case we get stopped out in the same month we initially enter a position.  In other words, entriesThisMonth stays one until a new month is observed.  And we can’t enter when entriesThisMonth is equal to one.

Full Code

input: startMonth(11),endMonth(5),
longOrShort(1),
useMACDFilter(1),MACDFast(9),MACDSlow(26),MACDAvgLen(9),MACDLevel(0),
useMAFilter(0),MALength(30),
useRSIFilter(0),RSILength(14),RSILevel(50),
startAccountSize(100000),
marketRiskLen(30),
riskPerTrade(5000),
maxTradeRisk(5000);

vars: currentMonth(0),mp(0),iShares(0),entriesThisMonth(0),monthOfTomorrow(0),
RSIVal(0),MAVal(0),MACDVal(0),MACDAvg(0),canBuy(True),canShort(True);

mp = marketPosition;
iShares = riskPerTrade/bigPointValue/avgTrueRange(marketRiskLen);

RSIVal = rsi(close,RSILength);
MAVal = xAverage(close,MALength);
MACDVal = macd(close,MACDFast,MACDSlow);
MACDAvg = xAverage(MACDVal,MACDAvgLen);

canBuy = True;
canShort = True;

mp = marketPosition;

monthOfTomorrow = month(date of tomorrow);

if entriesThisMonth = 1 and monthOfTomorrow <> startMonth then
entriesThisMonth = 0;

if useMACDFilter = 1 then
begin
canBuy = MACDVal > MACDLevel;
canShort = MACDVal < MACDLevel;
end;

if useMAFilter = 1 then
begin
canBuy = close > MAVal and canBuy;
canShort = close < MAVal and canShort;
end;

if useRSIFilter = 1 then
begin
canBuy = RSIVal > RSILevel and canBuy;
canShort = RSIVal < RSILevel and canShort;
end;

currentMonth = Month(Date of tomorrow);
//print(d," ",currentMonth," ",startMonth," ",entriesThisMonth);
If currentMonth = startMonth and mp = 0 and entriesThisMonth = 0 Then
begin
// print(d," ",currentMonth," ",canBuy);
if longOrShort = 1 and canBuy then
entriesThisMonth = 1;
if longOrShort = 1 and canBuy then
buy("Buy Month") iShares contracts next bar at market;
if longOrShort <> 1 and canShort then
sellShort("Short Month") iShares contracts next bar at market;
if longOrShort = -1 and canShort then
entriesThisMonth = 1;
end;

if CurrentMonth = endMonth Then
begin
if longOrShort = 1 then
sell("L-xit Month") currentShares contracts next bar at market
else
buyToCover("S-xit Month") currentShares contracts next bar at market;
end;

if mp = 1 then
sell("l-xitMM") next bar at entryPrice - maxTradeRisk/bigPointValue stop;
if mp =-1 then
buyToCover("s-xitMM") next bar at entryPrice + maxTradeRisk/bigPointValue stop;
Complete Code Framework

Here is the best equity curve I uncovered when I optimized the startMonth from 1 to 12 and the endMonth from 1 to 12 and the maxTradeRisk per contract and the three entry filters.  Entering in November when the moving average filter aligns and exiting on the first day of August and risking $5,500 per contract produced this equity curve.

Enter November get out the beginning of August

The test returned what would basically be similar to a buy and hold scenario; the difference being you only hold the trade between seven and eight months of the year and risk only $5,500 per contract.  If you get stopped out, you wait until November to get back in – whenever the moving average filter allows.  Net profit to draw down ratio is north of 4.0.

Last Comment

If I optimize from 1 to 12 for the start month and 1 to 12 for end month, will this not cause an error?  What if the two values equal?  I mean I can’t enter and exit in the same month – a one-day trade?  You could make the code smarter, but it doesn’t matter.  As a user you will know better than to use the same number and the optimizer will test the combination with the same number, but the results will fall off the table.   In this case, error trapping doesn’t prevent a necessarily unwanted or dangerous scenario.

Prune Your Trend Following Algorithm

Multiple trading decisions based on “logic” may not add to the bottom line

In this post, I will present a trend following system that uses four exit techniques.  These techniques are based on experience and also logic.  The problem with using multiple exit techniques is that it is difficult to see the synergy that is generated from all the moving parts.  Pruning your algorithm may help cut down on invisible redundancy and opportunities to over curve fit.  The trading strategy I will be presenting will use a very popular entry technique overlaid with trade risk compression.

Entry logic

Long:

Criteria #1:  Penetration of the closing price above an 85 day (closing prices) and 1.5X standard deviation-based Bollinger Band.

Criteria #2:  The mid-band or moving average must be increasing for the past three consecutive days.

Criteria #3: The trade risk (1.5X standard deviation) must be less than 3 X average true range for the past twenty days and also must be less than $4,500.

Risk is initially defined by the standard deviation of the market but is then compared to $4,500. If the trade risk is less than $4,500, then a trade is entered. I am allowing the market movement to define risk, but I am putting a ceiling on it if necessary.

Short:

Criteria #1:  Penetration of the closing price below an 85 day (closing prices) and 1.5X standard deviation-based Bollinger Band.

Criteria #2:  The mid-band or moving average must be decreasing for the past three consecutive days.

Criteria #3:  Same as criteria #3 on the long side

Exit Logic

Exit #1:  Like any Bollinger Band strategy, the mid band or moving average is the initial exit point.  This exit must be included in this particular strategy, because it allows exits at profitable levels and works synergistically with the entry technique.

Exit #2:  Fixed $ stop loss ($3,000)

Exit #3:  The mid-band must be decreasing for three consecutive days and today’s close must be below the entry price.

Exit #4:  Todays true range must be greater than 3X average true range for the past twenty days, and today’s close is below yesterday’s, and yesterday’s close must be below the prior days.

Here is the logic of exits #2 through exit #4.  With longer term trend following system, risk can increase quickly during a trade and capping the maximum loss to $3,000 can help in extreme situations.  If the mid-band starts to move down for three consecutive days and the trade is underwater, then the trade probably should be aborted.  If you have a very wide bar and the market has closed twice against the trade, there is a good chance the trade should be aborted.

Short exits use the same logic but in reverse.  The close must close below the midband, or a $3,000 maximum loss, or three bars where each moving average is greater than the one before, or a wide bar and two consecutive up closes.

Here is the logic in PowerLanguage/EasyLanguage that includes the which exit seletor.

[LegacyColorValue = true]; 
Inputs: maxEntryRisk$(4500),maxNATRLossMult(3),maxTradeLoss$(3000),
indicLen(85),numStdDevs(1.5),highVolMult(3),whichExit(7);

Vars: upperBand(0), lowerBand(0),slopeUp(False),slopeDn(False),
largeAtr(0),sma(0),
initialRisk(0),tradeRisk(0),
longLoss(0),shortLoss(0),permString("");

upperBand = bollingerBand(close,indicLen,numStdDevs);
lowerBand = bollingerBand(close,indicLen,-numStdDevs);
largeATR = highVolMult*(AvgTrueRange(20));

sma = average(close,indicLen);

slopeUp = sma>sma[1] and sma[1]>sma[2] and sma[2]>sma[3];
slopeDn = sma<sma[1] and sma[1]<sma[2] and sma[2]<sma[3];

initialRisk = AvgTrueRange(20);
largeATR = highVolMult * initialRisk;
tradeRisk = (upperBand - sma);
// 3 objects in our permutations
// exit 1, exit 2, exit 3
// perm # exit #
// 1 1
// 2 1,2
// 3 1,3
// 4 2
// 5 2,3
// 6 3
// 7 1,2,3

if whichExit = 1 then permString = "1";
if whichExit = 2 then permString = "1,2";
if whichExit = 3 then permString = "1,3";
if whichExit = 4 then permString = "2";
if whichExit = 5 then permString = "2,3";
if whichExit = 6 then permString = "3";
if whichExit = 7 then permString = "1,2,3";



{Long Entry:}
If (MarketPosition = 0) and
Close crosses above upperBand and slopeUp and
(tradeRisk < initialRisk*maxNATRLossMult and tradeRisk<maxEntryRisk$/bigPointValue) then
begin
Buy ("LE") Next Bar at Market;
End;


{Short Entry:}

If (MarketPosition = 0) and slopeDn and
Close crosses below lowerBand and
(tradeRisk < initialRisk*maxNATRLossMult and tradeRisk<maxEntryRisk$/bigPointValue) then
begin
Sell Short ("SE") Next Bar at Market;
End;


{Long Exits:}

if marketPosition = 1 Then
Begin
longLoss = initialRisk * maxNATRLossMult;
longLoss = minList(longLoss,maxTradeLoss$/bigPointValue);

If Close < sma then
Sell ("LX Stop") Next Bar at Market;;

if inStr(permString,"1") > 0 then
sell("LX MaxL") next bar at entryPrice - longLoss stop;

if inStr(permString,"2") > 0 then
If sma < sma[1] and sma[1] < sma[2] and sma[2] < sma[3] and close < entryPrice then
Sell ("LX MA") Next Bar at Market;
if inStr(permString,"3") > 0 then
If TrueRange > largeATR and close < close[1] and close[1] < close[2] then
Sell ("LX ATR") Next Bar at Market;
end;

{Short Exit:}

If (MarketPosition = -1) Then
Begin

shortLoss = initialRisk * maxNATRLossMult;
shortLoss = minList(shortLoss,maxTradeLoss$/bigPointValue);
if Close > sma then
Buy to Cover ("SX Stop") Next Bar at Market;

if inStr(permString,"1") > 0 then
buyToCover("SX MaxL") next bar at entryPrice + shortLoss stop;

if inStr(permString,"2") > 0 then
If sma > sma[1] and sma[1] > sma[2] and sma[2] > sma[3] and close > entryPrice then
Buy to Cover ("SX MA") Next Bar at Market;
if inStr(permString,"3") > 0 then
If TrueRange > largeAtr and close > close[1] and close[1] > close[2] then
Buy to Cover ("SX ATR") Next Bar at Market;
end;
Trend following with exit selector

Please note that I modified the code from my original by forcing the close to cross above or below the Bollinger Bands.  There is a slight chance that one of the exits could get you out of a trade outside of the bands, and this could potentially cause and automatic re-entry in the same direction at the same price.  Forcing a crossing, makes sure the market is currently within the bands’ boundaries.

This code has an input that will allow the user to select which combination of exits to use.

Since we have three exits, and we want to evaluate all the combinations of each exit separately, taken two of the exits and finally all the exits, we will need to rely on a combinatorial table.    In long form, here are the combinations:

3 objects in our combinations of exit 1, exit 2, exit 3

  • one  – 1
  • two  – 1,2
  • three  –  1,3
  • four –  2
  • five  – 2,3
  • six –  3
  • seven  –  1,2,3

There are a total of seven different combinations. Given the small set, we can effectively hard-code this using string manipulation to create a combinatorial table. For larger sets, you may find my post on the Pattern Smasher beneficial. A robust programming language like Easy/PowerLanguage offers extensive libraries for string manipulation. The inStr string function, for instance, identifies the starting position of a substring within a larger string. When keyed to the whichExit input, I can dynamically recreate the various combinations using string values.

  1. if whichExit = 1 then permString = “1”
  2. if whichExit = 2 then permString= “1,2”
  3. if whichExit = 3 then permString = “1,2,3”
  4.  etc…

As I optimize from one to seven, permString will dynamically change its value, representing different rows in the table. For my exit logic, I simply check if the enumerated string value corresponding to each exit is present within the string.

	if inStr(permString,"1") > 0 then
sell("LX MaxL") next bar at entryPrice - longLoss stop;
if inStr(permString,"2") > 0 then
If sma < sma[1] and sma[1] < sma[2] and sma[2] < sma[3] and close < entryPrice then
Sell ("LX MA") Next Bar at Market;
if inStr(permString,"3") > 0 then
If TrueRange > largeATR and close < close[1] and close[1] < close[2] then
Sell ("LX ATR") Next Bar at Market;
Using inStr to see if the current whichExit input applies

When permString = “1,2,3” then all exits are used.  If permString = “1,2”, then only the first two exits are utilized.  Now all we need to do is optimize whichExit from 1 to 7.  Let’s see what happens:

Combination of all three exits

The best combination of exits was “3”.  Remember 3 is the permString  that = “1,3” – this combination includes the money management loss exit, and the wide bar against position exit.  It only slightly improved overall profitability instead of using all the exits – combo #7.  In reality, just using the max loss stop wouldn’t be a bad way to go either.  Occam uses his razor to shave away unnecessary complexities again!

If you like this code, you should check out the Summer Special at my digital store. I showcase over ten more trend-following algorithms with different entry and exit logic constructs.  These other algorithms are derived from the best Trend Following “Masters” of the twentieth century.  IMHO!

Here is a video you can watch that goes over the core of this trading strategy.

 

Multi-Agents and the Power of the Series Function

Jeff Swanson wrote a great post on multi-agent trading a few years ago.

Jeff created a simple mean reversion system and then created two derivatives that culminated in three systems (or three agents.)  Using Murray Ruggiero’s Equity Curve Feedback, he was able to poll which system was doing the best, synthetically, and execute the strategy that showed the best performance.   If memory serves, picking the highflyer turned out to be the way to go.  Jeff had just touched the surface of Murray’s tool. but it definitely did the job.  Murray contracted me to fix some problems with the ECF tool and I did, but the tool is just way too cumbersome, resource hungry and requires a somewhat higher level of EasyLanguage knowledge to be universally applicable.  I was doing similar research in the area of polling multiple strategies and picking the best, just like Jeff did, and just executing that one system, when I thought about this post.  Traders do this all the time.  They have multiple strategies in the pipeline and monitor the performance and if one is head and shoulders better than what they are currently trading, they will switch systems.  This was one of the side benefits of the ECF tool.

What is an agent

An agent is any trading system that produces a positive expectancy.  Using multiple agents in a polling process allows a trader to go with the strategy that is currently performing the best.  This sounds reasonable, but there are pitfalls.  You could always be behind the curve – picking the best system right before it has its draw down.  Agents can be similar, or they can be totally different types of systems.  I am going to follow in Jeff’s footsteps and create three agents with the same DNA.  Here is what I call the AgentSpawner strategy.

inputs: movAvgLen(200),numDownDays(3),numDaysInTrade(2),stopLoss(5000);


value1 = countIf(c < c[1],numDownDays);
if c > average(c,movAvgLen) and value1 = numDownDays then
buy next bar at open;
if barsSinceEntry = numDaysInTrade then
sell next bar at open;
if marketPosition = 1 then sell next bar at entryPrice - stopLoss/bigPointValue stop;
Use this template and optimize inputs to spawn new agents

This code trades in the direction of the longer-term moving average and waits for a pull back on N consecutive down closes.  I am using the neat function countIF. This function counts the number of times the conditional test occurs in the last N bars.  If I want to know the number of times I have had a down close in the last 3 days, I can use this function like this.

Value1 = countIF(c<c[1],3);

// this is what the function doues
// 1.) todays close < yesterdays close + 1
// 2.) yesterdays close < prior days close + 2
// 3.) day before yesterdays close < prior cays close + 3

// If value3 = 3 then I know I had three conscecutive down
// closes. If value3 is less than three then I did not.

If the close is greater than the longer-term moving average and I have N consecutive down closings, then I buy the next bar at the open.  I use a wide protective stop and get out after X bars since entry.  Remember EasyLanguage does not count the day of entry in its barsSinceEntry calculation.  I am not using the built-in setStopLoss as I don’t want to get stopped out on the day of entry.  In real trading, you may want to do this, but for testing purposes my tracking algorithm was not this sophisticated.  I spawned three agents with the following properties.

	Case 1: //Agent 1
movAvgLen = 200;
numDownDays = 2;
numDaysInTrade = 15;
stopLoss = 7500;
Case 2: //Agent 2
movAvgLen = 140;
numDownDays = 3;
numDaysInTrade = 9;
stopLoss = 2500;
Case 3: //Agent 3
movAvgLen = 160;
numDownDays = 3;
numDaysInTrade = 15;
stopLoss = 2500;

System Tracking Algorithm

This is why I love copy-paste programming.  This can be difficult if you don’t know your EasyLanguage or how TradeStation processes the bars of data.  Get educated by checking my books out at amazon.com – that is if you have not already.  This code is a very simplistic approach for keeping track of a system’s trades and its equity.

value4 = countIf(c<c[1],4);
value3 = countIf(c<c[1],3);
value2 = countIf(c<c[1],2);
//Agent #1 tracking algorithm
if sys1Signal<> 1 and c[1] > average(c[1],160) and value2[1] = 2 then
begin
sys1Signal = 1;
sys1BarCount = -1;
sys1TradePrice = open;
sys1LExit = open - 7500/bigPointValue;
end;
if sys1Signal = 1 then
begin
sys1BarCount+=1;
if low < sys1LExit and sys1BarCount > 0 then
begin
sys1TradePrice = sys1LExit;
sys1Signal = 0;
end;
if sys1BarCount = 16 and sys1Signal = 1 then
begin
sys1TradePrice = open;
sys1Signal = 0;
end;
end;
Yes, this looks a little hairy, but it really is simple stuff

I am pretending to be TradeStation here.  First, I need to test to see if Agent#1 entered into a long position.  If the close of yesterday is greater than the moving average, inclusive of yesterdays close, and there has been two consecutive down closes, then I know a trade should have been entered on todays open.  EasyLanguage’s next bar paardigm cannot be utilized here.  Remember I am not generating signals, I am just seeing if today’s (not tomorrows or the next bars) trading action triggered a signal and if so, I need to determine the entry/exit price.  I am gathering this information so I can feed it into a series function.  If a trade is triggered, I set four variables:

  1. sys1Signal – 1 for long, -1 for short, and 0 for flat.
  2. sys1BarCount – set to a -1 because I immediately increment.
  3. sys1TradePrice – at what price did I enter or exit
  4. sys1LExit – set this to our stop loss level

If I am theoretically long, remember we are just tracking here, then I need to test, starting with the following day, if the low of the day is below our stop loss level and if it is I need to reset two variables:

  1. sys1TradePrice – where did I get out
  2. sys1Signal – set to 0 for a flat position

If not stopped out, then I start counting the number of bars sys1Signal is equal to 1.  If sys1BarCount = 16, then I get out at the open by resetting the following variables:

  1. sys1TradePrice = open
  2. sys1Signal = 0

If you look back at the properties for Agent#1 you will see I get out after 15 days, not 16.  Here is where the next bar paradigm can make it confusing.  The AgentSpawner strategy says to sell next bar at open when barsSinceEntry = 15.  The next bar after 15 is 16, so we store the open of the 16th bar as our trade price.

Now copy and paste the code into a nice editor such as NotePad++ or NotePad and replace the string sys1 with sys2.  Copy the code from NotePad++ into your EasyLanguage editor.  Now back to NotePad++ and replace sys2 with sys3.  Copy that code into the EL edition too.  Now all you need to do is change the different properties for each agent and you will have three tracking modules.

The Power of the EasyLanguage Series Function

The vanilla version of EasyLanguage has object-oriented nuances that you may not see right off the bat.  In my opinion, a series function is like a class.  Before I get started, let me explain what I mean by series.  All EasyLanguage function are of three types.

  1. simple – like a Bollinger band calculation
  2. series – like we are talking about here
  3. auto-detect – the interpreter/compiler decides

The series function has a memory for the variables that are used within the function.  Take a look at this.

input: funcID(string),seed(numericSimple);

vars: count(0);
if barNumber = 1 then // on first bar seed count
count = seed;
count = count+1;
print(d," ",funcID," ", count);
SeriesFunctionTest = count;
Count is class-like member

On the first bar of the function call – remember it will be called on each bar in the chart, the function variable count is assigned seed. Seed will be ignored on subsequent bars.   What makes this magical is that no matter how many times you call the function on the same bar it remembers the internal variables on somewhat of a hierarchical basis (each call remembers its own stuff.)  It like a class in that it gets instantiated on the very first call.  Meaning if you call it three times on the first bar of the data, you will have three distinct internal variable memories.  Take a look at my sandbox function driver and its output.

result = SeriesFunctionTest("Call #1",50);
result = SeriesFunctionTest("Call #2",5);
result = SeriesFunctionTest("Call #3",100);

//outPut

1170407.00 Call #1 51.00 //first bar 51 = seed + count + 1
1170407.00 Call #2 6.00 //first bar 6 = seed + count + 1
1170407.00 Call #3 101.00 //first bar 101 = seed + count + 1

1170410.00 Call #1 52.00 // second bar it remembered count was 51
1170410.00 Call #2 7.00 // second bar it remembered count was 6
1170410.00 Call #3 102.00 // second bar it remembered count was 101

1170411.00 Call #1 53.00 // you have a unique function values that
1170411.00 Call #2 8.00 // were instantiated on the first bar
1170411.00 Call #3 103.00 // of the test.

1170412.00 Call #1 54.00
1170412.00 Call #2 9.00
1170412.00 Call #3 104.00
Series functions rock - but they are resource hungry

Why is this important?

I have created a PLSimulator function that keeps track of the three agent’s performance.  I need the profit or loss to stick with each function and then also add or subtract from it.  This is a neat function.  Remember if you like this stuff buy my books at Amazon.com.

//ProfitLoss Simulator
Inputs: signal(numericseries),tradePrice(numericSimple),orderType(numericSimple),useOte(Truefalse);
Vars:dmode(0),LEPrice(-99999),LXPrice(-99999),SEPrice(-99999),SXPrice(-99999);
vars: GProfit(0),OpenProfit(0);
vars: modTradePrice(0);

vars: printOutTrades(True);

modTradePrice = tradePrice;

if orderType = 1 then // stop order
begin
if signal = 1 or (signal = 0 and signal[1] = - 1) then
modTradePrice = maxList(open,modTradePrice);
if signal = -1 or (signal = 0 and signal[1] = 1) then
modTradePrice = minList(open,modTradePrice);
end;

if orderType = 2 then // limit order
begin
if signal = 1 or (signal = 0 and signal[1] = - 1) then
modTradePrice = minList(open,modTradePrice);
if signal = -1 or (signal = 0 and signal[1] = 1) then
modTradePrice = maxList(open,modTradePrice);
end;
if orderType = 3 then // market order
begin
modTradePrice = open;
end;

If Signal[0]=1 And (Signal[1]=-1 Or Signal[1]=0) Then
begin
LEPrice=modTradePrice;
SXPrice = -999999;
condition1 = false;
If Signal[1]=-1 Then
begin
SXPrice=modTradePrice;
GProfit=(SEPrice-SXPrice)+GProfit;
condition1 = True;
End;
if not(condition1) then
if printOutTrades then Print(d," L:Entry ",LEPrice)
else
if printOutTrades then Print(d," L:Entry ",LEPrice," ",(SEPrice-SXPrice)*bigPointValue:8:2," ",GProfit*bigPointValue:9:2);
End;
{('***********************************************}
If Signal[0]=-1 And (Signal[1]=1 Or Signal[1]=0) Then
begin
SEPrice=modTradePrice;
LXPrice = 999999;
condition1 = false;
If Signal[1]=1 Then
begin
condition1 = True;
LXPrice=modTradePrice;
GProfit=(LXPrice-LEPrice)+GProfit;
End;
if not(condition1) then
if printOutTrades then Print(d," S:Entry ",SEPrice)
else
if printOutTrades then Print(d," L:Exit ",LXPrice," ",(LXPrice-LEPrice)*bigPointValue:8:2," ",GProfit*bigPointValue:9:2);

End;
If Signal[0]=0 And Signal[1]=-1 Then
begin
SXPrice = modTradePrice;
GProfit=(SEPrice-SXPrice)+GProfit;
if printOutTrades then Print(d," S:Exit ",SXPrice," ",(SEPrice-SXPrice)*bigPointValue:8:2," ",GProfit*bigPointValue:9:2);

end;
If Signal[0]=0 And Signal[1]=1 Then
begin
LXPrice = modTradePrice;
GProfit=(LXPrice-LEPrice)+GProfit;
if printOutTrades then Print(d," L:Exit ",LXPrice," ",(LXPrice-LEPrice)*bigPointValue:8:2," ",GProfit*bigPointValue:9:2);

end;

If Signal[1]=1 And useOte=True Then
begin
OpenProfit=(Close[1]-LEPrice);
End;
If Signal[1]=-1 and useOte=True Then
begin
OpenProfit=(SEPrice-Close[1]);
End;
If Signal[1]=0 Or useOte=False Then
begin
OpenProfit=0;
End;

PLSimulator=(GProfit+OpenProfit)*bigpointvalue;
Simulate profit and loss and more importantly keep track of it

Feed tracker algorithm data into the function

Your information must be properly assigned to get this to work.  First, I show how to get the information into the function.  The function does all the work and returns the equity.  I then determine the best agent by looking at the ROC over the past thirty days of equity for each agent and pick the very best.  I then trade the very best.  This is a very quick application of the function.  I will have a more sophisticated function, something akin to Murray’s ECF but with much less overhead and more strategy templates.

sys1Equity = PLSimulator(sys1Signal,sys1TradePrice,1,True);
sys2Equity = PLSimulator(sys2Signal,sys2TradePrice,1,True);
sys3Equity = PLSimulator(sys3Signal,sys3TradePrice,1,True);


vars: multiAgent(0);

value1 = maxList(sys1Equity-sys1Equity[30],sys2Equity-sys2Equity[30],sys3Equity-sys3Equity[30]);
multiAgent = 1;
if sys2Equity-sys2Equity[30] = value1 then multiAgent = 2;
if sys3Equity-sys3Equity[30] = value1 then multiAgent = 3;


{print(d," ",sys1Equity-sys1Equity[30]," ",sys1Equity);
print(d," ",sys2Equity-sys2Equity[30]," ",sys2Equity);
print(d," ",sys3Equity-sys3Equity[30]," ",sys2Equity);}
print(d," MultiAgent ",multiAgent);

//system parameters
vars: movAvgLen(200),numDownDays(3),numDaysInTrade(2),stopLoss(5000);
Switch ( multiAgent )
Begin
Case 1:
movAvgLen = 200;
numDownDays = 2;
numDaysInTrade = 15;
stopLoss = 7500;
Case 2:
movAvgLen = 140;
numDownDays = 3;
numDaysInTrade = 9;
stopLoss = 2500;
Case 3:
movAvgLen = 160;
numDownDays = 3;
numDaysInTrade = 15;
stopLoss = 2500;
End;
// Actual system execution
value1 = countIf(c < c[1],numDownDays);

if multiAgent <> multiAgent[1] then print(d," ---->multiagent trans ");

if c > average(c,movAvgLen) and value1 = numDownDays then
begin
if multiAgent = 1 then buy("Sys1") next bar at open;
if multiAgent = 2 then buy("Sys2") next bar at open;
if multiAgent = 3 then buy("Sys3") next bar at open;
end;
if barsSinceEntry >= numDaysInTrade then
sell next bar at open;
if marketPosition = 1 then sell next bar at entryPrice - stopLoss/bigPointValue stop;
Cool usage of a switch-case and agent determination

If this seems over your head…

Get one of my books are check out Jeff Swanson’s course.  EasyLanguage has so many little nuggets that can help you define your algorithm into an actionable strategy.  You will never know how your strategy will work until your program it (properly) and back test it.  And then potentially improve it with optimization.

Multi-Agent Results

 

 

How To Test and Optimize Turn of the Month Seasonality

Historical evidence suggests a potential seasonal pattern around the end of the month in the markets.

If you have been involved with the markets for even a short period of time, you have heard about this trade.  Buy N days prior to the end of the month and then exit M days after the end of the month.  This is a simple test to perform if you have a way to determine the N and the M in the algorithm.  You could always buy on the 24th of the month, but the 24th of the month may not equal N days prior to the end of the month. 

Simple approach that doesn’t always work – buy the 24th of the month and exit the 5th of the following month.

if dayOfMonth(d) = 24 then buy next bar at open;

if marketPosition = 1 and dayOfMonth(d) = 5 then sell next bar at open;

Before we get into a little better coding of this algorithm, let’s see the numbers.  The first graph is trading one contract of the ES futures once a month – no execution fees were applied.  The same goes for the US bond futures chart that follows.  Before reading further please read this.

CFTC-required risk disclosure for hypothetical results:

Hypothetical performance results have many inherent limitations, some of which are described below. No representation is being made that any account will or is likely to achieve profits or losses similar to those shown. in fact, there are frequently sharp differences between hypothetical performance results and the actual results subsequently achieved by any particular trading program.

One of the limitations of hypothetical performance results is that they are generally prepared with the benefit of hindsight. In addition, hypothetical trading does not involve financial risk, and no hypothetical trading record can completely account for the impact of financial risk in actual trading. For example, the ability to withstand losses or to adhere to a particular trading program in spite of trading losses are material points which can also adversely affect actual trading results. There are numerous other factors related to the markets in general or to the implementation of any specific trading program which cannot be fully accounted for in the preparation of hypothetical performance results and all of which can adversely affect actual trading results.
Buying N days before EOM and Selling M days after EOM
Ditto!

No Pain No Gain

Looking into the maw of draw down and seeing the jagged and long teeth.

Draw down as a percentage of account value.
Ditto2

The bonds had more frequent draw down but not so deep.  These teeth can cause a lot of pain.

Well, George what is the N and M?

I should have done M days before and N days after to maintain alphabetic order, but here you go.

ES: N = 6 AND M = 6

US: N =10 AND M = 1

How did you do this?

Some testing platforms have built-in seasonality tools, but, and I could be wrong I didn’t find what I needed in the TradeStation function library.  So, I built my own.

A TradingDaysLeftInMonth function had to be created.  This function is a broad swipe at attempting to determining this value.  It’s not very smart because it doesn’t take HOLIDAYS into consideration.  But for a quick analysis it is fine.  How does one design such a function?  First off, what do we know to help provide information that might be useful?  We know how many days are in each month (again this function isn’t smart enough to take into consideration leap years) and we know what day of the week each trading day belongs to.  We have this function DayOfWeek(Date) already in EasyLanguage.  And we know the DayOfMonth(Date) (built-in too!) With these three tidbits of information, we should be able to come up with a useful function.   Not to mention a little programming knowledge.  I was working on a Python project when I was thinking of this function, so I decided to prototype it there.  No worries, the algorithm can be easily translated to EasyLanguage. And yes, I could have used my concept of a Sandbox to prototype in EasyLanguage as wellRemember a sandbox is a playground where you can quickly test a snippet of code.  Using the ONCE keyword, you can quickly throw some generic EasyLanguage together sans trade directives and mate it to a chart and get to the nuts and bolts quickly.  I personally like having an indicator and a strategy sandbox.  Here is a generic snippet of code where we assume the day of month is the 16th and it is a Monday ( 2 – 1 for Sunday thru 7 for Saturday) and there are 31 days in whatever month.

currentDayOfWeek = 2;
currentDayOfMonth = 16;
loopDOW = currentDayOfWeek;
daysInMonth = 31
#create the calender for the remaining month
tdToEOM=0; #total days to EOM
for j in range(currentDayOfMonth,daysInMonth+1):
if loopDOW != 1 and loopDOW != 7:
tdToEOM +=1;
print(j," ",loopDOW," ",tdToEOM)
loopDOW +=1;
if loopDOW > 7: loopDOW = 1; #start back on Monday
Create a synthetic calendar from the current day of month

I just absolutely love the simplicity of Python.  When I am prototyping for EasyLanguage, I put a semicolon at the end of each line.  Python doesn’t care.  Here is the output from this snippet of code.

Cur>Day    DOWDay  DaysLeftAccum.
-----------------------------------
16 2 1 Monday
17 3 2 Tuesday
18 4 3 Wednesday
19 5 4 Thursday
20 6 5 Friday
21 7 5 Saturday
22 1 5 Sunday
23 2 6 Monday
24 3 7 Tuesday
25 4 8 Wednesday
26 5 9 Thursday
27 6 10 Friday
28 7 10 Saturday
28 1 10 Sunday
30 2 11 Monday
31 3 12 Tuesday

On Monday 16th there were 12 Trading Days Left In Month Inclusive
Output of Python Snippet - use in EZLang.

I start out with the current day of the month, 16 and loop through the rest of the days of the month.  Whenever I encounter a Sunday (1) or a Saturday (7) I do not increment tdToEOM, else I do increment.  

Here is how the function works on a chart.  Remember in TradeStation I am placing a market order for the NEXT BAR.

Counting the days until the EOM

This snippet of code is the heart of the function, but you must make in generic for any day of any month.  Here it is in EasyLanguage – you will see the similarity between the Python snippet and its corresponding EasyLanguage.

array: monthDays[12](0);

monthDays[1] = 31;
monthDays[2] = 28;
monthDays[3] = 31;
monthDays[4] = 30;
monthDays[5] = 31;
monthDays[6] = 30;
monthDays[7] = 31;
monthDays[8] = 31;
monthDays[9] = 30;
monthDays[10] = 31;
monthDays[11] = 30;
monthDays[12] = 31;

vars: curDayOfMonth(0),curDayOfWeek(0),loopDOW(0),tdToEOM(0),j(0);

curDayOfWeek = dayOfWeek(d);
curDayOfMonth = dayOfMonth(d);

{Python prototype
tdToEOM=0;
for j in range(currentDayOfMonth,daysInMonth+1):
if loopDOW != 1 and loopDOW != 7:
tdToEOM +=1;
print(j," ",loopDOW," ",tdToEOM)
loopDOW +=1;
if loopDOW > 7: loopDOW = 1;
}

loopDOW = curDayOfWeek+1;
tdToEOM=0;

for j = curDayOfMonth to monthDays[month(d)]
begin
if loopDOW <> 1 and loopDOW <> 7 then
tdToEOM +=1; // tdToEOM = tdToEOM + 1;
loopDOW +=1;
if loopDOW > 7 then loopDOW = 1;
end;
TradingDaysLeftInMonth = tdToEOM;
EasyLanguage Function : TradingDaysLeftInMonth

I used arrays to store the number of days in each month.  You might find a better method.  Once I get the day of the month and the day of the week I get to work.  EasyLanguage uses a 0 for Sunday so to be compliant with the Python function I add a 1 to it.  I then loop from the current day of month through monthDays[month(d)].  Remember month(d) returns the month number [1…12].  A perfect index into my array.  That is all there is to it.  The code is simple, but the concept requires a little thinking.  Okay, now that we have the tools for data mining, let’s do some.  I did this by creating the following strategy (the same strategy that create the original equity curves.)

inputs: numDaysBeforeEOM(8),numDaysAfterEOM(10),movingAvgLen(100);
inputs: stopLossAmount(1500),profitTargetAmount(4000);

vars: TDLM(0),TDIM(0);

TDLM = tradingDaysLeftInMonth;
TDIM = tradingDayOfMonth;

if c >= average(c,movingAvgLen) and TDLM = numDaysBeforeEOM then
begin
buy("Buy B4 EOM") next bar at open;
end;

if marketPosition = 1 and barsSinceEntry > 3 then
begin
if TDIM = numDaysAfterEOM then
begin
sell("Sell TDOM") next bar at open;
end;
end;
setStopLoss(stopLossAmount);
setProfitTarget(profitTargetAmount);
EasyLanguage function driver in form of Strategy

A complete strategy has trade management and an entry and an exit.  In this case, I added an additional feature – a trend detector in the form of a longer-term moving average.  Let’s see if we can improve the trading system.  Thank goodness for Genetic Optimization.  Here is the @ES market.

Get your Pick ready to mine!

Smoothed the equity curve – took the big draw down out.

Genetically MODIFIED – Data Mining at its best!

Here are the parameters:

Did not like the moving average. Wide stop and wide profit objective. Days to EOM and after EOM stayed the same.

Bond System:

Bond market results.

If you like this type of programming check out my books at Amazon.com.  I have books on Python and of course EasyLanguage.  I quickly assembled a YouTube video discussing this post here.

Conclusion – there is something here, no doubt.  But it can be a risky proposition.  It definitely could provide fodder for the basis of a more complete trading system.

George’s Amazon Page

 

Happy New Year and some code tidbits

Dollar Cost Averaging Algorithm – Buy X amount every other Monday!

I am not going to get into this controversial approach to trading.  But in many cases, you have to do this because of the limitations of your retirement plan.  Hey if you get free matching dough, then what can you say.

Check this out!

Buy $1000 worth of shares every other Monday. INTC
if dayOfWeek(d of tomorrow)< dayOfWeek(d) Then
begin
toggle = not(toggle);
if toggle then buy dollarInvestment/close shares next bar at open;
end;
Toggle every other Monday ON

Here I use a Boolean typed variable – toggle.   Whenever it is the first day of the week, turn the toggle on or off.  Its new state becomes the opposite if its old state.  On-Off-On-Off – buy whenever the toggle is On or True.  See how I determined if it was the first day of the week; whenever tomorrow’s day of the week is less than today’s day of the week, we must be in a new week.  Monday = 1 and Friday = 5.

Allow partial liquidation on certain days of the year.

Here I use arrays to set up a few days to liquidate a fractional part of the entire holdings.

arrays: sellDates[20](0),sellAmounts[20](0);
//make sure you use valid dates
sellDates[0] = 20220103;sellAmounts[0] = 5000;
sellDates[1] = 20220601;sellAmounts[1] = 5000;
sellDates[2] = 20230104;sellAmounts[2] = 8000;
sellDates[3] = 20230601;sellAmounts[3] = 8000;

value1 = d + 19000000;
if sellDates[cnt] = value1 then
begin
sell sellAmounts[cnt]/close shares total next bar at open;
cnt = cnt + 1;
end;
Notice the word TOTAL in the order directive.

You can use this as reference on how to declare an array and assign the elements an initial value.  Initially, sellDates is an array that contains 20 zeros, and sellAmounts is an array that contains 20 zeros as well.  Load these arrays with the dates and the dollar amounts that want to execute a partial liquidation.  Be careful with using Easylanguage’s Date.  It is in the form YYYMMDD – todays date December 28, 2023, would be represented by 1231228.  All you need to do is add 19000000 to Date to get YYYYMMDD format.  You could use a function to help out here, but why.  When the d + 19000000 equals the first date in the sellDates[1] array, then a market sell order to sell sellAmounts[1]/close shares total is issued.  The array index cnt is incremented.  Notice the order directive.

sell X shares total next bar at market;

If you don’t use the keyword total, then all the shares will be liquidated.

To create a complete equity curve, you will want to liquidate all the shares at some date near the end of the chart.  This is used as input as well as the amount of dollars to invest each time.

//Demonstation of Dollar Cost Averaging
//Buy $1000 shares every two weeks
//Then liquidate a specific $amount on certain days
//of the year

vars: toggle(False),cnt(0);
inputs: settleDate(20231205),dollarInvestment(1000);
arrays: sellDates[20](0),sellAmounts[20](0);
//make sure you use valid dates
sellDates[0] = 20220103;sellAmounts[0] = 5000;
sellDates[1] = 20220601;sellAmounts[1] = 5000;
sellDates[2] = 20230104;sellAmounts[2] = 8000;
sellDates[3] = 20230601;sellAmounts[3] = 8000;

value1 = d + 19000000;
if sellDates[cnt] = value1 then
begin
sell sellAmounts[cnt]/close shares total next bar at open;
cnt = cnt + 1;
end;

if dayOfWeek(d of tomorrow)< dayOfWeek(d) Then
begin
toggle = not(toggle);
if toggle then buy dollarInvestment/close shares next bar at open;
end;

if d + 19000000 = settleDate Then
sell next bar at open;

A cool looking chart.

A chart with all the entries and exits.

Allow Pyramiding

Turn Pyramding On. You will want to allow up to X entries in the same direction regardless of the order directive.

Working with Data2

I work with many charts that have a minute bar chart as Data1 and a daily bar as Data2.  And always forget the difference between:

Close of Data2 and Close[1] of Data2

24 hour regular session used here
1231214 1705 first bar of day - close of data2 4774.00 close[1] of data2 4760.75
1231214 1710 second bar of day - close of data2 4774.00 close[1] of data2 4760.75
1231215 1555 next to last bar of day - close of data2 4774.00 close[1] of data2 4760.75
1231215 1600 last bar of day - close of data2 4768.00 close[1] of data2 4774.00

Up to the last bar of the current trading day the open, high, low, close of data2 will reflect the prior day’s values.  On the last bar of the trading day – these values will be updated with today’s values.

Hope these tidbits help you out.  Happy New Years!

Warmest regards,

George

A Timely Function in EasyLanguage

Learn how to constrain trading between a Start and End Time – not so “easy-peasy”

Why waste time on this?

Is Time > StartTime and Time <= EndTime then…  Right?

This is definitely valid when EndTime > StartTime.  But what happens when EndTime < StartTime.  Meaning that you start trading yesterday, prior to midnight, and end trading after midnight (today.)  Many readers of my blog know I have addressed this issue before and created some simple equations to help facilitate trading around midnight.  The lines of code I have presented work most of the time.  Remember when the ES used to close at 4:15 and re-open at 4:30 eastern?   As of late June 2021, this gap in time has been removed.  The ES now trades between 4:15 and 4:30 continuously.   I discovered a little bug in my code for this small gap when I was optimizing a “get out time.”   I wanted to create a user function that uses the latest session start and end times and build a small database of valid times for the 24-hour markets.  Close to 24 hours – most markets will close for an hour.  With this small database you can test your time to see if it is a valid time.  The construction of this database will require a little TIME math and require the use of arrays and loops.  It is a good tutorial.  However, it is not perfect.  If you optimize time and you want to get out at 4:20 in 2020 on the ES, then you still run into the problem of this time not being valid.  This requires a small workaround.  Going forward with automated trading, this function might be useful.  Most markets trade around the midnight hour – I think meats might be the exception.

Time Based Math

How many 5-minute bars are between 18:00 (prior day) and 17:00 (today)?  We can do this in our heads 23 hours X (60 minutes / 5 minutes) or 23 X 12 = 276 bars.  But we need to tell the computer how to do this and we also should allow users to use times that include minutes such as 18:55 to 14:25. Here’s the math – btw you may have a simpler approach.

Using startTime of 18:55 and endTime of 14:25.

  1. Calculate the difference in hours and minutes from startTime to midnight and then in terms of minutes only.
    1. timeDiffInHrsMins = 2360 – 1855 = 505 or 5 hours and 5 minutes.  We use a little short cut hear.  23 hours and 60 minutes is the same as 2400 or midnight.
    2. timeDiffInMinutes = intPortion(timeDiffInHrsMins/100) * 60 + mod(timeDiffInHrsMins,100).  This looks much more complicated than it really is because we are using two helper functions – intPortion and mod:
      1. ) intPortion – returns the whole number from a fraction.  If we divide 505/100 we get 5.05 and if we truncate the decimal we get 5 hours.
      2. ) mod – returns the modulus or remainder from a division operation.  I use this function a lot.  Mod(505/100) gives 5 minutes.
      3. ) Five hours * 60 minutes + Five minutes = 305 minutes.
  2. Calculate the difference in hours and minutes from midnight to endTime and then in terms of minutes only.
    1. timeDiffInHrsMins = endTime – 0 = 1425 or 14 hours and 25 minutes.  We don’t need to use our little, short cut here since we are simply subtracting zero.  I left the zero in the calculation to denote midnight.
    2. timeDiffInMinutes = timeDiffInMinutes + intPortion(timeDiffInHrsMins/100) * 60 + mod(timeDiffInHrsMins,100).  This is the same calculation as before, but we are adding the result to the number of minutes derived from the startTime to midnight.  
      1. ) intPortion – returns the whole number from a fraction.  If we divide 1425/100, we get 14.05 and if we truncate the decimal, we get 14.
      2. ) mod – returns the modulus or remainder from a division operation.  I use this function a lot.  Mod(1425/100) gives 25.
      3. ) 14* 60 + 25 = 865 minutes.
      4. ) Now add 305 minutes to 865.  This gives us a total of 1165 minutes between the start and end times.
    3. Now divide the timeDiffInMinutes by the barInterval.  This gives 1165 minutes/5 minutes or 233 five-minute bars.

Build Database of all potential time stamps between start and end time

We now have all the ingredients to build are simple array-based database.  Don’t let the word array scare you away.  Follow the logic and you will see how easy it is to use them.   First, we will create the database of all the time stamps between the regular session start and end times of the data on the chart.  We will use the same time-based math (and a little more) to create this benchmark database.  Check out the following code.

// You could use static arrays
// reserve enough room for 24 hours of minute bars
// 24 * 60 = 1440
// arrays: theoTimes[1440](0),validTimes[1440](0);
// syntax - arrayName[size](0) - the zero sets all elements to zero
// this seems like over kill because we don't know what
// bar interval or time span the user will be using

// these arrays are dynamic
// we dimension or reserve space for just what we need
arrays: theoTimes[](0),validTimes[](0);

// Create a database of all times stamps that potentiall could
// occur

numBarsInCompleteSession = timeDiffInMinutes/barInterval;

// Now set the dimension of the array by using the following
// function and the number of bars we calculated for the entire
// regular session
Array_setmaxindex(theoTimes,numBarsInCompleteSession);
// Load the array from start time to end time
// We know the start time and we know the number of X-min bars
// loop from 1 to numBarsInCompleteSession and
// use timeSum as the each and every time stamp
// To get to the end of our journey we must use Time Based Math again.
timeSum = startTime;
for arrayIndex = 1 to numBarsInCompleteSession
Begin
timeSum = timeSum + barInterval;
if mod(timeSum,100) = 60 Then
timeSum = timeSum - 60 + 100; // 1860 - becomes 1900
if timeSum = 2400 Then
timeSum = 0; // 2400 becomes 0000
theoTimes[arrayIndex] = timeSum;

print(d," theo time",arrayIndex," ",theoTimes[arrayIndex]);
end;
Create a dynamic array with all possible time stamps

This is a simple looping mechanism that continually adds the barInterval to timeSum until numBarsInCompleteSession are exhausted.  Reade about the difference between static and dynamic arrays in the code, please.  Here’s how it works with a session start time of 1800:

theoTimes[01] = 1800 + 5 = 1805
theoTimes[02] = 1805 + 5 = 1810
theoTimes[04] = 1810 + 5 = 1815
theoTimes[05] = 1815 + 5 = 1820
theoTimes[06] = 1820 + 5 = 1830
...
//whoops - need more time based math 1860 is not valid
theoTimes[12] = 1855 + 5 = 1860
Insert bar stamps into our theoTimes array

More time-based math

Our loop hit a snag when we came up with 1860 as a valid time.  We all know that 1860 is really 1900.  We need to intervene when this occurs.  All we need to do is use our modulus function again to extract the minutes from our time.

If mod(timeSum,100) = 60 then timeSum = timeSum – 60 + 100.  Her we remove the sixty minutes from the time and add an hour to it.

1860 – 60 + 100 = 1900 // a valid time stamp

That should fix everything right?  What about this:

theoTimes[69] = 2340 + 5 = 2345
theoTimes[70] = 2345 + 5 = 2350
theoTimes[71] = 2350 + 5 = 2355
theoTimes[72] = 2355 + 5 = 2400 // whoops
2400 is okay in Military Time but not in TradeStation

This is a simple fix with.  All we need to do is check to see if timeSum = 2400 and if so, just simply reset to zero.

Build a database on our custom time frame.

Basically, do the same thing, but use the user’s choice of start and end times.

	//calculate the number of barInterval bars in the
//user defined session
numBarsInSession = timeDiffInMinutes/barInterval;

Array_setmaxindex(validTimes,numBarsInSession);

startTimeStamp = calcTime(startTime,barInterval);

timeSum = startTime;
for arrayIndex = 1 to numBarsInSession
Begin
timeSum = timeSum + barInterval;
if mod(timeSum,100) = 60 Then
timeSum = timeSum - 60 + 100;
if timeSum = 2400 Then
timeSum = 0;
validTimes[arrayIndex] = timeSum;
// print(d," valid times ",arrayIndex," ",validTimes[arrayIndex]," ",numBarsInSession);
end;
Create another database using the time frame chose by the user

Don’t allow weird times!

Good programmers don’t allow extraneous values to bomb their functions.  TRY and CATCH the erroneous input before proceeding.  If we have a database of all possible time stamps, shouldn’t we use it to validate the user entry?  Of course, we should.

//Are the users startTime and endTime valid
//bar time stamps? Loop through all the times
//and validate the times.

for arrayIndex = 1 to numBarsInCompleteSession
begin
if startTimeStamp = theoTimes[arrayIndex] then
validStartTime = True;
if endTime = theoTimes[arrayIndex] Then
validEndTime = True;
end;
Validate user's input.

Once we determine if both time inputs are valid, then we can determine if the any bar’s time stamp during a back-test is a valid time.

if validStartTime = false or validEndTime = false Then
error = True;


//Okay to check for bar time stamps against our
//database - only go through the loop until we
//validate the time - break out when time is found
//in database. CanTradeThisTime is the name of the function.
//It returns either True or False

if error = False Then
Begin
for arrayIndex = 1 to numBarsInSession
Begin
if t = validTimes[arrayIndex] Then
begin
CanTradeThisTime = True;
break;
end;
end;
end;
This portion of the code is executed on every bar of the back-test.

Once and only Once!

The code that creates the theoretical and user defined time stamp database is only done on the very first bar of the chart.  Also, the validation of the user’s input in only done once as well.  This is accomplished by encasing this code inside a Once – begin – end.

Now this code will test any time stamp against the current regular session.  If you run a test prior to June 2021, you will get a theoretical database that includes a 4:20, 4:25, and 4:30 on the ES futures.  However, in actuality these bar stamps did not exist in the data.  This might cause a problem when working with a start or end time prior to June 2021, that falls in this range.

Function Name:  CanTradeThisTime

Complete code:

//  Function to determine if time is in acceptable
// set of times
inputs: startTime(numericSimple),endTime(numericSimple);

vars: sessStartTime(0),sessEndTime(0),
startTimeStamp(0),timeSum(0),timeDiffInHrsMins(0),timeDiffInMinutes(0),
validStartTime(False), validEndTime(False);

vars: error(False),arrayIndex(0),
numBarsInSession(0),numBarsInCompleteSession(0);

arrays: theoTimes[](0),validTimes[](0);
vars: arrCnt(0),seed(0);

canTradeThisTime = false;

once
Begin

sessStartTime = sessionStartTime(0,1);
sessEndTime = sessionEndTime(0,1);

if sessStartTime > sessEndTime Then
Begin
timeDiffInHrsMins = 2360 - sessStartTime;
timeDiffInMinutes = intPortion(timeDiffInHrsMins/100) * 60 + mod(timeDiffInHrsMins,100);

timeDiffInHrsMins = sessEndTime - 0;
timeDiffInMinutes += intPortion(timeDiffInHrsMins/100) * 60 + mod(timeDiffInHrsMins,100);
end;

if sessStartTime <= sessEndTime Then
Begin
timeDiffInHrsMins = (intPortion(sessEndTime/100) - 1)*100 + mod(sessEndTime,100) + 60 - sessEndTime;
timeDiffInMinutes = intPortion(timeDiffInHrsMins/100) * 60 + mod(timeDiffInHrsMins,100);
end;

numBarsInCompleteSession = timeDiffInMinutes/barInterval;

Array_setmaxindex(theoTimes,numBarsInCompleteSession);

timeSum = startTime;
for arrayIndex = 1 to numBarsInCompleteSession
Begin
timeSum = timeSum + barInterval;
if mod(timeSum,100) = 60 Then
timeSum = timeSum - 60 + 100;
if timeSum = 2400 Then
timeSum = 0;
theoTimes[arrayIndex] = timeSum;

print(d," theo time",arrayIndex," ",theoTimes[arrayIndex]);
end;

if startTime > endTime Then
Begin
timeDiffInHrsMins = 2360 - startTime;
timeDiffInMinutes = intPortion(timeDiffInHrsMins/100) * 60 + mod(timeDiffInHrsMins,100);
timeDiffInHrsMins = endTime - 0;
timeDiffInMinutes += intPortion(timeDiffInHrsMins/100) * 60 + mod(timeDiffInHrsMins,100);
end;

if startTime <= endTime Then
Begin
timeDiffInHrsMins = (intPortion(endTime/100) - 1)*100 + mod(endTime,100) + 60 - startTime;
timeDiffInMinutes = intPortion(timeDiffInHrsMins/100) * 60 + mod(timeDiffInHrsMins,100);
end;

numBarsInSession = timeDiffInMinutes/barInterval;

Array_setmaxindex(validTimes,numBarsInSession);

startTimeStamp = calcTime(startTime,barInterval);

timeSum = startTime;
for arrayIndex = 1 to numBarsInSession
Begin
timeSum = timeSum + barInterval;
if mod(timeSum,100) = 60 Then
timeSum = timeSum - 60 + 100;
if timeSum = 2400 Then
timeSum = 0;
validTimes[arrayIndex] = timeSum;
print(d," valid times ",arrayIndex," ",validTimes[arrayIndex]," ",numBarsInSession);
end;
for arrayIndex = 1 to numBarsInCompleteSession
begin
if startTimeStamp = theoTimes[arrayIndex] then
validStartTime = True;
if endTime = theoTimes[arrayIndex] Then
validEndTime = True;
end;
end;

if validStartTime = False or validEndTime = false Then
error = True;

if error = False Then
Begin
for arrayIndex = 1 to numBarsInSession
Begin
if t = validTimes[arrayIndex] Then
begin
CanTradeThisTime = True;
break;
end;
end;
end;
Complete CanTradeThisTime function code

Sandbox Strategy function driver

inputs: startTime(1800),endTime(1500);

if canTradeThisTime(startTime,endTime) Then
if d = 1231206 or d = 1231207 then
print(d," ",t," can trade this time");

I hope you find this useful.  Remember to purchase by Easing into EasyLanguage books at amazon.com.  The DayTrade edition is still on sale.  Email me with any question or suggestions or bugs or anything else.

 

 

Pyramania Levels with 24-Hour Session – Free Code

Easing Into EasyLanguage-DayTrade Edition [On SALE Now thru November]

Get Your Copy Now!  On sale now for thru the end of November!

EZ-DT Pyramania is a strategy I introduced in the Day Trade Edition.  The logic is rather simple – pyramid as the market moves through multiple levels during the trading day. – buy, buy, buy, dump or buy, dump, short, short, short, dump.  The distance between the levels is constant.  In the book, I showed an algorithm with a total of 6 levels with 7 edges.

Pyramania of @ES.D

Here the market opens @ 9:30 and the levels are instantly plotted and trades are executed as the market moves through the levels located above the open tick.  Over the weekend, I had a reader ask how he could modify the code to plot the levels on the 24-hour @ES session.  In the day session, I used the change in the date as the trigger for the calculation and plotting of the levels.  Here is the day session version.

inputs:numSegments(6),numPlots(6);

arrays: segmentBounds[](0);

variables: j(0),loopCnt(0),segmentSize(0),avgRng(0);
once
Begin
Array_SetMaxIndex(segmentBounds, numSegments);
end;

if d <> d[1] Then // only works on the @ES.D or any .D session
begin
avgRng = average(range of data2,20);
segmentSize = avgRng/numSegments;
loopCnt = -1*numSegments/2;
for j = 0 to numSegments
begin
segmentBounds[j] = openD(0) + loopCnt * segmentSize;
loopCnt = loopCnt + 1;
end;
end;

//The following time constraint only works when all time stamps
//are less than the end of day time stamp
//This will not work when time = 1800 and endTime = 1700
if t < calcTime(sessionEndTime(0,1),-barInterval) Then
begin
if numPlots >= 1 then plot1(segmentBounds[0],"Level 0");
if numPlots >= 2 then plot2(segmentBounds[1],"Level 1");
if numPlots >= 3 then plot3(segmentBounds[2],"Level 2");
if numPlots >= 4 then plot4(segmentBounds[3],"Level 3");
if numPlots >= 5 then plot5(segmentBounds[4],"Level 4");
if numPlots >= 6 then plot6(segmentBounds[5],"Level 5");
if numPlots >= 7 then plot7(segmentBounds[6],"Level 6");
// plot8(segmentBounds[7],"Level 7");
// plot9(segmentBounds[8],"Level 8");
end;
Works great with @ES.D or any @**.D

I like this code because it exposes you to arrays, loops, and plotting multiple values.  You can fix this by modifying and adding some code.  I used the Trading Around Midnight blog post to get the code I needed to enable plotting around 0:00 hours.  Here is the updated code:

inputs:numSegments(6),numPlots(6);
arrays: segmentBounds[](0);
variables: j(0),loopCnt(0),segmentSize(0),avgRng(0),
startTime(0),endTime(0),endTimeOffset(0);

once
Begin
Array_SetMaxIndex(segmentBounds, numSegments);
end;

startTime = sessionStartTime(0,1);
endTime = sessionEndTime(0,1);
//let TS tell you when the market opens - remember the
//first time stamp is the open time + bar interval
if t = calcTime(sessionStartTime(0,1),barInterval) Then
begin
avgRng = average(range of data2,20);
segmentSize = avgRng/numSegments;
loopCnt = -1*numSegments/2;
for j = 0 to numSegments
begin
segmentBounds[j] = open + loopCnt * segmentSize;
loopCnt = loopCnt + 1;
end;
end;

// if startTime > endTime then you know you are dealing with
// timees that more than likely bridges midnight
// if time is greater then 1700 (end time) then you must
// subtract an offset so it makes sense - endTimeOffset
// play with the math and it will come to you
if startTime > endTime then
begin
endTimeOffset = 0;
if t >= startTime+barInterval and t<= 2359 then
endTimeOffSet = 2400-endTime;
end;
if t-endTimeOffSet < endTime Then
begin
if numPlots >= 1 then plot1(segmentBounds[0],"Level 0");
if numPlots >= 2 then plot2(segmentBounds[1],"Level 1");
if numPlots >= 3 then plot3(segmentBounds[2],"Level 2");
if numPlots >= 4 then plot4(segmentBounds[3],"Level 3");
if numPlots >= 5 then plot5(segmentBounds[4],"Level 4");
if numPlots >= 6 then plot6(segmentBounds[5],"Level 5");
if numPlots >= 7 then plot7(segmentBounds[6],"Level 6");
// plot8(segmentBounds[7],"Level 7");
// plot9(segmentBounds[8],"Level 8");
end;
Modification to plot data around midnight

Here I let TS tell me with the market opens and then use some simple math to make sure I can plot with the time is greater than and less than the end of day time.

Plots from 18:05 through midnight until 17:00 the next day.

Email me if you have the book and want to companion code to the strategy – georgeppruitt@gmail.com

 

 

 

 

Can You Turn Failure into Success?

Have You Ever Wondered If You Just Reversed the Logic?

You have been there before. What you thought was a great trading idea turns out to be a big flop. We have all developed these types of algorithms. Then it hits you, just flip the logic and in turn the equity curve. Hold your horses! First off you have to make sure it’s not just the execution costs that is hammering the equity curve into oblivion. When testing a fresh trading idea, it is best to keep execution costs to zero. This way if your idea is a good one, but is simply backward, then you have a chance of creating something good out of something bad. I was playing around with a mean reversion day trading algorithm (on the @ES.D – day session of the mini S&P 500) that created the following equity curve.  Remember to read the disclaimer concerning hypothetical performance before proceeding reading the rest of this blog.  It is located under the DISCLAIMER – REAMDE! tab.  By reading the rest of this blog post it implies that you understand the limitations of hypothetical back testing and simulated analysis.

The pandemic created a strong mean reversion environment. In the initial stage of this research, I did not set the executions costs – they defaulted to zero. My idea was to buy below the open after the market moved down from the high of the day a certain percentage of price. Since I was going to be buying as the market was moving down, I was willing to use a wide stop to see if I could hold on to the falling knife. Short entries were just the opposite -sell short above the open after the market rallied a certain percentage of price. I wanted to enter on a hiccup. Once the market moved down a certain range from the high of the day, I wanted to enter on a stop at the high of the prior bar. I figured if the price penetrated the high of the prior five-minute bar in a down move, then it would signal an eventual rotation in the market. Again, I was just throwing pasta against the wall to see what would stick. I even came up with a really neat name for the algorithm the Rubber Band system – stretch just far enough and the market is bound to slam back. Well, there wasn’t any pasta sticking. Or was there? If I flipped the equity curve 180 degrees, then I would have a darned good strategy. All it would take is to reverse the signals, sell short when I was buying and buy when I was selling short. Instead of a mean reversion scheme, this would turn into a momentum-based strategy.

Here are the original rules.

maxCloseMinusOpen = maxList(close - todaysOpen,maxCloseMinusOpen);
maxOpenMinusClose = maxList(todaysOpen - close,maxOpenMinusClose);

if c < todaysOpen and todaysOpen-c = maxOpenMinusClose and
(maxCloseMinusOpen + maxOpenMinusClose)/c >= stretchPercent Then
canBuy = True;
if c > todaysOpen and c- todaysOpen = maxCloseMinusOpen and
(maxCloseMinusOpen + maxOpenMinusClose)/c >= stretchPercent Then
canShort = True;
Guts of the complete failure.

Here I measure the maximum distance from the highest close above the open and the lowest close below the open.  The distance between the two points is the range between the highest and lowest closing price of the current day.  If the close is less than today’s open, and the range between the extremes of the highest close and lowest close of the trading day is greater than stretchPercent, then an order directive to buy the next bar at the current bar’s high is issued.  The order is alive until it is filled, or the day expires.  Selling short uses the same calculations but requires the close of the current bar to be above the open.   The stretchPercent was set to 1 percent and the protective stop was set to a wide $2,000.  As you can see from the equity curve, this plan did not work except for the time span of the pandemic.  Could you optimize the strategy and make it a winning system.  Definitely.  But the 1 percent and $2000 stop seemed very logical to me.  Since we are comparing the range of the data to a fixed price of the data, then we don’t need to worry about the continuous contract distortion.  Maybe we would have to, if the market price was straddling zero.  Anyways, here is a strategy using the same entry technique, but reversed, with some intelligent trade filtering.  I figured a profit objective might be beneficial, because the stop was hit several times during the original test.

$2K was hit often!
Using some trade filtering and stop loss and profit objective on the reversal of the original strategy.

If you like the following code, make sure you check out my books at Amazon.com.  This type of code is used the Hi-Res and Day-Trading editions of the Easing_Into_Easylanguage series.

input: stretchPercent(0.01),stopLoss(1000),takeProfit(1000),
dontTradeBefore(930),dontTradeBeforeOffset(5),
dontTradeAfter(1500),dontTradeAfterOffset(5),
rangeCompressionPercent(0.75);

vars: buysToday(0),shortsToday(0),mp(0),atr(0),canBuy(False),canShort(False),canTrade(False);
vars: todaysOpen(0),maxCloseMinusOpen(0),maxOpenMinusClose(0);
if t = sessionStartTime(0,1)+barInterval Then
Begin
todaysOpen = open;
maxCloseMinusOpen = 0;
maxOpenMinusClose = 0;
buysToday = 0;
shortsToday = 0;
canTrade = False;
atr = avgTrueRange(20) of data2;
if trueRange of data2 < atr * rangeCompressionPercent Then
canTrade = True;
canBuy = False;
canShort = False;

end;

mp = marketPosition;

if mp = 1 and mp <> mp[1] then buysToday +=1;
if mp =-1 and mp <> mp[1] then shortsToday +=1;

maxCloseMinusOpen = maxList(close - todaysOpen,maxCloseMinusOpen);
maxOpenMinusClose = maxList(todaysOpen - close,maxOpenMinusClose);

if c < todaysOpen and todaysOpen-c = maxOpenMinusClose and
(maxCloseMinusOpen + maxOpenMinusClose)/c >= stretchPercent Then
canShort = True;
if c > todaysOpen and c- todaysOpen = maxCloseMinusOpen and
(maxCloseMinusOpen + maxOpenMinusClose)/c >= stretchPercent Then
canBuy = True;


if canTrade and t >= calcTime(dontTradeBefore,dontTradeBeforeOffset) and
t < calcTime(dontTradeAfter,dontTradeAfterOffset) and t < sessionEndTime(0,1) Then
begin
if shortsToday = 0 and canShort = True Then
sellshort next bar at l stop;
if buysToday = 0 and canBuy = True Then
buy next bar at h stop;
end;


setExitOnClose;
setStopLoss(stopLoss);
setProfitTarget(takeProfit);
The anti Rubber Band Strategy

Trade filtering was obtained by limiting the duration during the trading day that a trade could take place.  It’s usually wise to wait a few minutes after the open and a few minutes prior to the close to issue trade directives.  Also, range compression of the prior day seems to help in many cases.  Or at least not range expansion.   I only allow one long entry or one short or both during the trading day – two entries only!  Read the code and let me know if you have any questions.  This is a good framework for other areas of research.  Limiting entries using the mp variable is a neat technique that you can use elsewhere.

And as always let me know if you see any bugs in the code.  Like Donnie Knuth says, “Beware of bugs in the above code; I have only proved it correct, not tried it!”