Category Archives: EasyLanguage Tutorial

ES.D Strategy with Ratcheting Trailing Stop [Intra-Day] – EasyLanguage

ES.D Strategy Utilizing Ratchet Trailing Stop

A reader of this blog wanted a conversion from my Ratchet Trailing Stop indicator into a Strategy.  You will notice a very close similarity with the indicator code as the code for this strategy.  This is a simple N-Bar [Hi/Lo] break out with inputs for the RatchetAmt and TrailAmt.  Remember RatchetAmt is how far the market must move in your favor before the stop is pulldown the TrailAmt.  So if the RatchetAmt is 12 and the TrailAmt is 6, the market would need to move 12 handles in your favor and the Trail Stop would move to break even.  If it moves another 12 handles then the stop would be moved up/down by 6 handles.  Let me know if you have any questions – this system is similar to the one I just posted.

Notice how the RED line Ratchets Up by the Fixed Amount [8/6]
inputs: ratchetAmt(6),trailAmt(6);
vars:longMult(0),shortMult(0),myBarCount(0);
vars:stb(0),sts(0),buysToday(0),shortsToday(0),mp(0);
vars:lep(0),sep(0);

If d <> d[1] then
Begin
longMult = 0;
shortMult = 0;
myBarCount = 0;
mp = 0;
lep = 0;
sep = 0;
buysToday = 0;
shortsToday = 0;
end;

myBarCount = myBarCount + 1;

If myBarCount = 6 then // six 5 min bars = 30 minutes
Begin
stb = highD(0); //get the high of the day
sts = lowD(0); //get low of the day
end;

If myBarCount >=6 and t < calcTime(sess1Endtime,-3*barInterval) then
Begin
if buysToday = 0 then buy("NBar-Range-B") next bar stb stop;
if shortsToday = 0 then sellShort("NBar-Range-S") next bar sts stop;
end;

mp = marketPosition;
If mp = 1 then
begin
lep = entryPrice;
buysToday = 1;
end;
If mp =-1 then
begin
sep = entryPrice;
shortsToday = 1;
end;


// Okay initially you want a X point stop and then pull the stop up
// or down once price exceeds a multiple of Y points
// longMult keeps track of the number of Y point multipes of profit
// always key off of lep(LONG ENTRY POINT)
// notice how I used + 1 to determine profit
// and - 1 to determine stop level

If mp = 1 then
Begin
If h >= lep + (longMult + 1) * ratchetAmt then longMult = longMult + 1;
Sell("LongTrail") next bar at (lep + (longMult - 1) * trailAmt) stop;
end;

If mp = -1 then
Begin
If l <= sep - (shortMult + 1) * ratchetAmt then shortMult = shortMult + 1;
buyToCover("ShortTrail") next bar (sep - (shortMult - 1) * trailAmt) stop;
end;

setExitOnClose;
I Used my Ratchet Indicator for the Basis of this Strategy

A Simple Break Out Algorithm Demonstrating Time Optimization

What is Better:  30, 60, or 120 Minute Break-Out on ES.D

Here is a simple tutorial you can use as a foundation to build a potentially profitable day trading system.  Here we wait N minutes after the open and then buy the high of the day or short the low of the day and apply a protective stop and profit objective.  The time increment can be optimized to see what time frame is best to use.  You can also optimize the stop loss and profit objective – this system gets out at the end of the day.  This system can be applied to any .D data stream in TradeStation or Multicharts.

Logic Description

  1. get open time
  2. get close time
  3. get N time increment
    1. 15 – first 15 minute of day
    2. 30 – first 30 minute of day
    3. 60 – first hour of day
  4. get High and Low of day
  5. place stop orders at high and low of day – no entries late in day
  6. calculate buy and short entries – only allow one each*
  7. apply stop loss
  8. apply profit objective
  9. get out at end of day if not exits have occurred

Optimization Results [From 15 to 120 by 5 minutes] on @ES.D 5 Minute Chart – Over Last Two Years

Optimization of Time: Look How the # Trades Decrease as the Time Increment Increases

Simple Orbo EasyLanguage

I threw this together rather quickly in a response to a reader’s question.  Let me know if you see a bug or two.  Remember once you gather your stops you must allow the order to be issued on every subsequent bar of the trading day.  The trading day is defined to be the time between timeIncrement and endTradeMinB4Close.  Notice how I used the EL function calcTime to calculate time using either a +positive or -negative input.  I want to sample the high/low of the day at timeIncrement and want to trade up until endTradeMinB4Close time.  I use the HighD and LowD functions to extract the high and low of the day up to that point.  Since I am using a tight stop relative to today’s volatility you will see more than 1 buy or 1 short occurring.  This happens when entry/exit occurs on the same bar and MP is not updated accordingly.  Somewhere  hidden in this tome of a blog you will see a solution for this.  If you don’t want to search I will repost it tomorrow.


//Optimizing Time to determine a simple break out
//Only works on .D data streams
Inputs: timeIncrement(15),endTradeMinB4Close(-15),stopLoss$(500),profTarg$(1000);

vars: firstBarTime(0),lastBarTime(0),buyStop(0),shortStop(0),
calcStopTime(0),quitTradeTime(0),buysToday(0),shortsToday(0),mp(0);

firstBarTime = sessionStartTime(0,1);
lastBarTime = sessionEndTime(0,1);

calcStopTime = calcTime(firstBarTime,timeIncrement);
quitTradeTime = calcTime(lastBarTime,endTradeMinB4Close);



If time = calcStopTime then
begin
buyStop = HighD(0);
shortStop = LowD(0);
buysToday = 0;
shortsToday = 0;
End;

if time >= calcStopTime and time < quitTradeTime then
begin
if buysToday = 0 then Buy next bar at buyStop stop;
if shortsToday = 0 then Sell short next bar at shortStop stop;
end;

mp = marketPosition;

If mp = 1 then buysToday = 1;
If mp = -1 then shortsToday = 1;

SetStopLoss(stopLoss$);
setProfitTarget(profTarg$);
setExitOnClose;
Orbo EasyLanguage Code

 

 

 

Highly Illogical – Best Guess Doesn’t Match Reality

An ES Break-Out System with Unexpected Parameters

I was recently testing the idea of a short term VBO strategy on the ES utilizing very tight stops.  I wanted to see if using a tight ATR stop in concert with the entry day’s low (for buys) would cut down on losses after a break out.  In other words, if the break out doesn’t go as anticipated get out and wait for the next signal.  With the benefit of hindsight in writing this post, I certainly felt like my exit mechanism was what was going to make or break this system.  In turns out that all pre conceived notions should be thrown out when volatility enters the picture.

System Description

  • If 14 ADX < 20 get ready to trade
  • Buy 1 ATR above the midPoint of the past 4 closing prices
  • Place an initial stop at 1 ATR and a Profit Objective of 1 ATR
  • Trail the stop up to the prior day’s low if it is greater than entryPrice – 1 ATR initially, and then trail if a higher low is established
  • Wait 3 bars to Re-Enter after going flat – Reversals allowed

That’s it.  Basically wait for a trendless period and buy on the bulge and then get it out if it doesn’t materialize.  I knew I could improve the system by optimizing the parameters but I felt I was in the ball park.  My hypothesis was that the system would fail because of the tight stops.  I felt the ADX trigger was OK and the BO level would get in on a short burst.  Just from past experience I knew that using the prior day’s price extremes as a stop usually doesn’t fair that well.

Without commission the initial test was a loser: -$1K and -$20K draw down over the past ten years.  I thought I would test my hypothesis by optimizing a majority of the parameters:

  • ADX Len
  • ADX Trigger Value
  • ATR Len
  • ATR BO multiplier
  • ATR Multiplier for Trade Risk
  • ATR Multiplier for Profit Objective
  • Number of bars to trail the stop – used lowest lows for longs

Results

As you can probably figure, I  had to use the Genetic Optimizer to get the job done.  Over a billion different permutations.  In the end here is what the computer pushed out using the best set of parameters.

No Commission or Slippage – Genetic Optimized Parameter Selection

Optimization Report – The Best of the Best

Top Parameters – notice the Wide Stop Initially and the Trailing Stop Look-Back and also the Profit Multiplier – but what really sticks out is the ADX inputs

ADX – Does it Really Matter?

Take a look at the chart – the ADX is mostly in Trigger territory – does it really matter?

A Chart is Worth a 1000 Words

What does this chart tell us?

70% of Profit was made in last 40 trades

Was the parameter selection biased by the heightened level of volatility?  The system has performed on the parameter set very well over the past two or three years.  But should you use this parameter set going into the future – volatility will eventually settle down.

Now using my experience in trading I would have selected a different parameter set.   Here are my biased results going into the initial programming.  I would use a wider stop for sure, but I would have used the generic ADX values.

George’s More Common Sense Parameter Selection – wow big difference

I would have used 14 ADX Len with a 20 trigger and risk 1 to make 3 and use a wider trailing stop.  With trend neutral break out algorithms, it seems you have to be in the game all of the time.  The ADX was supposed to capture zones that predicated break out moves, but the ADX didn’t help out at all.  Wider stops helped but it was the ADX values that really changed the complexion of the system.  Also the number of bars to wait after going flat had a large impact as well.  During low volatility you can be somewhat picky with trades but when volatility increases you gots to be in the game. – no ADX filtering and no delay in re-Entry.  Surprise, surprise!

Alogorithm Code

Here is the code – some neat stuff here if you are just learning EL.  Notice how I anchor some of the indicator based variables by indexing them by barsSinceEntry.  Drop me a note if you see something wrong or want a little further explanation.

Inputs: adxLen(14),adxTrig(25),atrLen(10),atrBOMult(1),atrRiskMult(1),atrProfMult(2),midPtNumBar(3),posMovTrailNumBars(2),reEntryDelay(3);
vars: mp(0),trailLongStop(0),trailShortStop(0),BSE(999),entryBar(0),tradeRisk(0),tradeProf(0);
vars: BBO(0),SBO(0),ATR(0),totTrades(0);

mp = marketPosition;
totTrades = totalTrades;
BSE = barsSinceExit(1);
If totTrades <> totTrades[1] then BSE = 0;
If totalTrades = 0 then BSE = 99;


ATR = avgTrueRange(atrLen);

SBO = midPoint(c,midPtNumBar) - ATR * atrBOMult;
BBO = midPoint(c,midPtNumBar) + ATR * atrBOMult;

tradeRisk = ATR * atrRiskMult;
tradeProf = ATR * atrProfMult;

If mp <> 1 and adx(adxLen) < adxTrig and BSE > reEntryDelay and open of next bar < BBO then buy next bar at BBO stop;
If mp <>-1 and adx(adxLen) < adxTrig AND BSE > reEntryDelay AND open of next bar > SBO then sellshort next bar at SBO stop;

If mp = 1 and mp[1] <> 1 then
Begin
trailLongStop = entryPrice - tradeRisk;
end;

If mp = -1 and mp[1] <> -1 then
Begin
trailShortStop = entryPrice + tradeRisk;
end;

if mp = 1 then sell("L-init-loss") next bar at entryPrice - tradeRisk[barsSinceEntry] stop;
if mp = -1 then buyToCover("S-init-loss") next bar at entryPrice + tradeRisk[barsSinceEntry] stop;


if mp = 1 then
begin
sell("L-ATR-prof") next bar at entryPrice + tradeProf[barsSinceEntry] limit;
trailLongStop = maxList(trailLongStop,lowest(l,posMovTrailNumBars));
sell("L-TL-Stop") next bar at trailLongStop stop;
end;
if mp =-1 then
begin
buyToCover("S-ATR-prof") next bar at entryPrice -tradeProf[barsSinceEntry] limit;
trailShortStop = minList(trailShortStop,highest(h,posMovTrailNumBars));
// print(d, " Short and trailStop is : ",trailShortStop);
buyToCover("S-TL-Stop") next bar at trailShortStop stop;
end;

The Complete Turtle EasyLanguage [Well About as Close as You Can Get]

The Complete Turtle EasyLanguage – Almost!

I have seen a plethora of posts on the Turtle trading strategies where the rules and code are provided.  The codes range from a mere Donchian breakout to a fairly close representation.  Without dynamic portfolio feedback its rather impossible to program the portfolio constraints as explained by Curtis Faith in his well received “Way Of The Turtle.”  But the other components can be programmed rather closely to Curtis’ descriptions.   I wanted to provide this code in a concise manner to illustrate some of EasyLanguage’s esoteric constructs and some neat shortcuts.  First of all let’s take a look at how the system has performed on Crude for the past 15 years.

Turtle Performance on Crude past 15 years

If a market trends, the Turtle will catch it.  Look how the market rallied in 2007 and immediately snapped back in 2008, and look at how the Turtle caught the moves – impressive.  But see how the system stops working in congestion.  It did take a small portion of the 2014 move down and has done a great job of catching the pandemic collapse and bounce.  In my last post, I programmed the LTL (Last Trader Loser) function to determine the success/failure of the Turtle System 1 entry.  I modified it slightly for this post and used it in concert with Turtle System 2 Entry and the 1/2N AddOn pyramid trade to get as close as possible to the core of the Turtle Entry/Exit logic.

Can Your Program This – sure you CAN!

Can You Program This?

I will provide the ELD so you can review at your leisure, but here are the important pieces of the code that you might not be able to derive without a lot of programming experience.

If mp[1] <> mp and mp <> 0 then 
begin
if mp = 1 then
begin
origEntry = entryPrice;
origEntryName = "Sys1Long";
If ltl = False and h >= lep1[1] then origEntryName = "Sys2Long";
end;
if mp =-1 then
begin
origEntry = entryPrice;
origEntryName = "Sys1Short";
If ltl = False and l <= sep1[1] then origEntryName = "Sys2Short";
end;
end;
Keeping Track Of Last Entry Signal Price and Name

This code determines if the current market position is not flat and is different than the prior bar’s market position.  If this is the case then a new trade has been executed.  This information is needed so that you know which exit to apply without having to forcibly tie them together using EasyLanguage’s from Entry keywords.  Here I just need to know the name of the entry.  The entryPrice is the entryPrice.  Here I know if the LTL is false, and the entryPrice is equal to or greater/less  than (based on current market position) than System 2 entry levels, then I know that System 2 got us into the trade.

If mp = 1 and origEntryName = "Sys1Long" then Sell currentShares shares next bar at lxp stop;
If mp =-1 and origEntryName = "Sys1Short" then buyToCover currentShares shares next bar at sxp stop;

//55 bar component - no contingency here
If mp = 0 and ltl = False then buy("55BBO") next bar at lep1 stop;
If mp = 1 and origEntryName = "Sys2Long" then sell("55BBO-Lx") currentShares shares next bar at lxp1 stop;

If mp = 0 and ltl = False then sellShort("55SBO") next bar at sep1 stop;
If mp =-1 and origEntryName = "Sys2Short" then buyToCover("55SBO-Sx") currentShares shares next bar at sxp1 stop;
Entries and Exits

The key to this logic is the keywords currentShares shares.  This code tells TradeStation to liquidate all the current shares or contracts at the stop levels.  You could use currentContracts contracts if you are more comfortable with futures vernacular.

AddOn Pyramiding Signal Logic

Before you can pyramid you must turn it on in the Strategy Properties.

Turn Pyramiding ON
If mp = 1 and currentShares < 4 then buy("AddonBuy") next bar at entryPrice + (currentShares * .5*NValue) stop;
If mp =-1 and currentShares < 4 then sellShort("AddonShort") next bar at entryPrice - (currentShares * .5*NValue) stop;

This logic adds positions on from the original entryPrice in increments of 1/2N.  The description for this logic is a little fuzzy.  Is the N value the ATR reading when the first contract was put on or is it dynamically recalculated?  I erred on the side of caution and used the N when the first contract was put on.  So to calculate the AddOn long entries you simply take the original entryPrice and add the currentShares * .5N.  So if currentShares is 1, then the next pyramid level would be entryPrice + 1* .5N.  If currentShares is 2 ,then entryPrice + 2* .5N and so on an so forth.  The 2N stop trails from the latest entryPrice.  So if you put on 4 contracts (specified in Curtis’ book), then the trailing exit would be 2N from where you added the 4th contract.  Here is the code for that.

Liquidate All Contracts at Last Entry –  2N

vars: lastEntryPrice(0);
If cs <= 1 then lastEntryPrice = entryPrice;
If cs > 1 and cs > cs[1] and mp = 1 then lastEntryPrice = entryPrice + ((currentShares-1) * .5*NValue);
If cs > 1 and cs > cs[1] and mp =-1 then lastEntryPrice = entryPrice - ((currentShares-1) * .5*NValue);

//If mp = -1 then print(d," ",lastEntryPrice," ",NValue);

If mp = 1 then sell("2NLongLoss") currentShares shares next bar at lastEntryPrice-2*NValue stop;
If mp =-1 then buyToCover("2NShrtLoss") currentShares shares next bar at lastEntryPrice+2*NValue Stop;
Calculate Last EntryPrice and Go From There

I introduce a new variable here: cs.  CS stands for currentShares and I keep track of it from bar to bar.  If currentShares or cs is less than or equal to1 I know that the last entryPrice was the original entryPrice.  Things get a little more complicated when you start adding positions – initially I couldn’t remember if EasyLanguage’s entryPrice contained the last entryPrice or the original – turns out it is the original – good to know.  So, if currentShares is greater than one and the current bar’s currentShares is greater than the prior bar’s currentShares, then I know I added on another contract and therefore must update lastEntryPrice.  LastEntryPrice is calculated by taking the original entryPrice and adding (currentShares-1) * .5N.  Now this is the theoretical entryPrice, because I don’t take into consideration slippage on entry.  You could make this adjustment.  So, once I know the lastEntryPrice I can determine 2N from that price.

Getting Out At 2N Trailing Stop

If mp = 1 then sell("2NLongLoss") currentShares shares next bar at lastEntryPrice-2*NValue stop;
If mp =-1 then buyToCover("2NShrtLoss") currentShares shares next bar at lastEntryPrice+2*NValue Stop;
Get Out At LastEntryPrice +/-2N

That’s all of the nifty code.  Below is the function and ELD for my implementation of the Turtle dual entry system.   You will see some rather sophisticated code when it comes to System 1 Entry and this is because of these scenarios:

  • What if you are theoretically short and are theoretically stopped out for a true loser and you can enter on the same bar into a long trade.
  • What if you are theoretically short and the reversal point would result in a losing trade.  You wouldn’t  record the loser in time to enter the long position at the reversal point.
  • What if you are really short and the reversal point would results in a true loser, then you would want to allow the reversal at that point

There are probably some other scenarios, but I think I covered all bases.  Just let me know if that’s not the case.  What I did to validate the entries was I programmed a 20/10 day breakout/failure with a 2N stop and then went through the list and deleted the trades that followed a non 2N loss (10 bar exit for a loss or a win.)  Then I made sure those trades were not in the output of the complete system.  There was quite a bit of trial and error.  If you see a mistake, like I said, just let me know.

Remember I published the results of different permutations of this strategy incorporating dynamic portfolio feedback at my other site www.trendfollowingsystems.com.  These results reflect the a fairly close portfolio that Curtis suggests in his book.

TURTLELTLFUNCTEST

 

Implementing Finite State Machine Functionality with EasyLanguage (Last Trade Was Loser Filter a la Turtle)

Last Trade Was a Loser Filter – To Use or Not To Use

Premise

A major component of the Turtle algorithm was to skip the subsequent 20-day break out if the prior was a winner.  I guess Dennis believed the success/failure of a trade had an impact on the outcome of the subsequent trade.  I have written on how you can implement this in EasyLanguage in prior posts, but I have been getting some questions on implementing FSM in trading and thought this post could kill two birds with one stone: 1) provide a template that can be adapted to any LTL mechanism and 2) provide the code/structure of setting up a FSM using EasyLanguage’s Switch/Case structure.

Turtle Specific LTL Logic

The Turtle LTL logic states that a trade is a loser if a 2N loss occurs after entry.  N is basically an exponential-like moving average of TrueRange.  So if the market moves 2N against a long or short position and stops you out, you have a losing trade.  What makes the Turtle algorithm a little more difficult is that you can also exit on a new 10-day low/high depending on your position.  The 10-day trailing exit does not signify a loss.  Well at least in this post it doesn’t.  I have code that says any loss is a loss, but for this explanation let’s just stick to a 2N loss to determine a trade’s failure.

How To Monitor Trades When Skipping Some Of Them

This is another added layer of complexity.  You have to do your own trade accounting behind the scenes to determine if a losing trade occurs.  Because if you have a winning trade you skip the next trade and if you skip it how do you know if it would have been a winner or a loser.  You have to run a theoretical system in parallel with the actual system code.

Okay let’s start out assuming the last trade was a winner.  So we turn real trading off.  As the bars go by we look for a 20-Day high or low penetration.  Assume a new 20-Day high is put in and a long position is established at the prior 20-Day high.  At this point you calculate a 2N amount and subtract if from the theoretical entry price to obtain the theoretical exit price.  So you have a theoMP (marketPosition) and a theoEX (exit price.)  This task seems pretty simple, so you mov on and start looking for a day that either puts in a new 10-Day low or crosses below your theoEX price.  If a new 10-Day low is put in then you continue on looking for a new entry and a subsequent 2N loss.  If a 2N loss occurs, then you turn trading back on and continue monitoring the trades – turning trading off and then back on when necessary.  In the following code I use these variables:

  • state – 0: looking for an entry or 1: looking for an exit
  • lep – long entry price
  • sep– short entry price
  • seekLong – I am seeking a long position
  • seekShort – I am seeking a short position
  • theoMP – theoretical market position
  • theoEX – theoretical exit price
  • lxp – long exit price
  • sxp – short exit price

Let’s jump into the Switch/Case structure when state = 0:

	Switch(state)
Begin
Case 0:
lep = highest(h[1],20) + minMove/priceScale;
sep = lowest(l[1],20) - minMove/priceScale;
If seekLong and h >= lep then
begin
theoMP = 1;
theoEX = maxList(lep,o) - 2 * atr;
// print(d," entered long >> exit at ",theoEX," ",atr);
end;
If seekShort and l <= sep then
begin
theoMP = -1;
theoEX = minList(sep,o) + 2 * atr;
end;
If theoMP <> 0 then
begin
state = 1;
cantExitToday = True;
end;
State 0 (Finite State Set Up)

The Switch/Case is a must have structure in any programming language.  What really blows my mind is that Python doesn’t have it.  They claim its redundant to an if-then structure and it is but its so much easier to read and implement.  Basically you use the Switch statement and a variable name and based on the value of the variable it will flow to whatever case the variable equates to.  Here we are looking at state 0.  In the CASE: 0  structure the computer calculates the lep and sep values – long and short entry levels.  If you are flat then you are seeking a long or a short position.  If the high or low of the bar penetrates it respective trigger levels then theoMP is set to 1 for long or -1 for short.  TheoEX is then calculated based on the atr value on the day of entry.  If theoMP is set to either a 1 or -1, then we know a trade has just been triggered.  The Finite State Machine then switches gears to State 1.  Since State = 1 the next Case statement is immediately evaluated.  I don’t want to exit on the same bar as I entered (wide bars can enter and exit during volatile times) I use a variable cantExitToday.  This variable delays the Case 1: evaluation by one bar.

State = 1 code:

		Case 1:
If not(cantExitToday) then
begin
lxp = maxList(theoEX,lowest(l[1],10)-minMove/priceScale);
sxp = minList(theoEX,highest(h[1],10)+minMove/priceScale);
If theoMP = 1 and l <= lxp then
begin
theoMP = 0;
seekLong = False;
if lxp <= theoEX then
ltl = True
Else
ltl = False;
end;
If theoMP =-1 and h >= sxp then
begin
theoMP = 0;
seekShort = False;
if sxp >= theoEX then
ltl = True
else
ltl = False;
end;
If theoMP = 0 then state = 0;
end;
cantExitToday = False;
end;
State = 1 (Switching Gears)

Once we have a theoretical position, then we only examine the code in the Case 1: module.  On the subsequent bar after entry, the lxp and sxp (long exit and short exit prices) are calculated.  Notice these values use maxList or minList to determine whichever is closer to the current market action – the 2N stop or the lowest/highest low/high for the past 10-daysLxp and sxp are assigned whichever is closer.  Each bar’s high or low is compared to these values.  If theoMP = 1 then the low is compared to lxp.  If the low crosses below lxp, then things are set into motion.  The theoMP is immediately set to  0 and seekLong is turned to False.  If lxp <= a 2N loss then ltl (last trade loser) is set to true.  If not, then ltl is set to False.   If theoMP = 0 then we assume a flat position and switch the FSM back to State 0 and start looking for a new trade.  The ltl variable is then used in the code to allow a real trade to occur.

Strategy Incorporates Our FSM Output

vars:N(0),mp(0),NLossAmt(0);
If barNumber = 1 then n = avgTrueRange(20);
if barNumber > 1 then n = (n*19 + trueRange)/20;

If useLTLFilter then
Begin
if ltl then buy next bar at highest(h,20) + minMove/priceScale stop;
if ltl then sellShort next bar at lowest(l,20) -minMove/priceScale stop;
end
Else
Begin
buy next bar at highest(h,20) + minMove/priceScale stop;
sellShort next bar at lowest(l,20) -minMove/priceScale stop;
end;

mp = marketPosition;

If mp <> 0 and mp[1] <> mp then NLossAmt = 2 * n;

If mp = 1 then
Begin
Sell("LL10-LX") next bar at lowest(l,10) - minMove/priceScale stop;
Sell("2NLS-LX") next bar at entryPrice - NLossAmt stop;
end;
If mp =-1 then
Begin
buyToCover("HH10-SX") next bar at highest(h,10) + minMove/priceScale stop;
buyToCover("2NLS-SX") next bar at entryPrice + NLossAmt stop;
end;
Strategy Code Using ltl filter

This code basically replicates what we did in the FSM, but places real orders based on the fact that the Last Trade Was A Loser (ltl.)

Does It Work – Only Trade After a 2N-Loss

Last Trade Loser In Action

Without Filter on the last 10-years in Crude Oil

With Filter on the last 10-years in Crude Oil

I have programmed this into my TradingSimula-18 software and will show a portfolio performance with this filter a little later at www.trendfollowingsystems.com.

I had to do some fancy footwork with some of the code due to the fact you can exit and then re-enter on the same bar.  In the next post on this blog I will so you those machinations .  With this template you should be able to recreate any last trade was a loser mechanism and see if it can help out with your own trading algorithms.  Shoot me an email with any questions.

 

 

 

Turn of the Month Trading Strategy [Stock Indices Only]

The System

This system has been around for several years.  Its based on the belief that fund managers start pouring money into the market near the end of the month and this creates momentum that lasts for just a few days.  The original system states to enter the market on the close of the last bar of the day if the its above a certain moving average value.  In the Jaekle and Tomasini book, the authors describe such a trading system.  Its quite simple, enter on the close of the month if its greater than X-Day moving average and exit either 4 days later or if during the trade the closing price drops below the X-Day moving average.

EasyLanguage or Multi-Charts Version

Determining the end of the month should be quite easy -right?  Well if you want to use EasyLanguage on TradeStation and I think on Multi-Charts you can’t sneak a peek at the next bar’s open to determine if the current bar is the last bar of the month.  You can try, but you will receive an error message that you can’t mix this bar on close with next bar.  In other words you can’t take action on today’s close if tomorrow’s bar is the first day of the month.  This is designed, I think, to prevent from future leak or cheating.  In TradeStation the shift from backtesting to trading is designed to be a no brainer, but this does provide some obstacles when you only want to do a backtest.

LDOM function – last day of month for past 15 years or so

So I had to create a LastDayOfMonth function.  At first I thought if the day of the month is the 31st then it is definitely the last bar of the month.  And this is the case no matter what.  And if its the 30th then its the last day of the month too if the month is April, June, Sept, and November.  But what happens if the last day of the month falls on a weekend.  Then if its the 28th and its a Friday and the month is blah, blah, blah.  What about February?  To save time here is the code:

Inputs: movAvgPeriods(50);
vars: endOfMonth(false),theDayOfWeek(0),theMonth(0),theDayOfMonth(0),isLeapYear(False);

endOfMonth = false;
theDayOfWeek = dayOfWeek(date);
theMonth = month(date);
theDayOfMonth = dayOfMonth(date);
isLeapYear = mod(year(d),4) = 0;

// 29th of the month and a Friday
if theDayOfMonth = 29 and theDayOfWeek = 5 then
endOfMonth = True;
// 30th of the month and a Friday
if theDayOfMonth = 30 and theDayOfWeek = 5 then
endOfMonth = True;
// 31st of the month
if theDayOfMonth = 31 then
endOfMonth = True;
// 30th of the month and April, June, Sept, or Nov
if theDayOfMonth = 30 and (theMonth=4 or theMonth=6 or theMonth=9 or theMonth=11) then
endOfMonth = True;
// 28th of the month and February and not leap year
if theDayOfMonth = 28 and theMonth = 2 and not(isLeapYear) then
endOfMonth = True;
// 29th of the month and February and a leap year or 28th, 27th and a Friday
if theMonth = 2 and isLeapYear then
Begin
If theDayOfMonth = 29 or ((theDayOfMonth = 28 or theDayOfMonth = 27) and theDayOfWeek = 5) then
endOfMonth = True;
end;
// 28th of the month and Friday and April, June, Sept, or Nov
if theDayOfMonth = 28 and (theMonth = 4 or theMonth = 6 or
theMonth = 9 or theMonth =11) and theDayOfWeek = 5 then
endOfMonth = True;
// 27th, 28th of Feb and Friday
if theMonth = 2 and theDayOfWeek = 5 and theDayOfMonth = 27 then
endOfMonth = True;
// 26th of Feb and Friday and not LeapYear
if theMonth = 2 and theDayOfWeek = 5 and theDayOfMonth = 26 and not(isLeapYear) then
endOfMonth = True;
// Memorial day adjustment
If theMonth = 5 and theDayOfWeek = 5 and theDayOfMonth = 28 then
endOfMonth = True;
//Easter 2013 adjustment
If theMonth = 3 and year(d) = 113 and theDayOfMonth = 28 then
endOfMonth = True;
//Easter 2018 adjustment
If theMonth = 3 and year(d) = 118 and theDayOfMonth = 29 then
endOfMonth = True;

if endOfMonth and c > average(c,movAvgPeriods) then
Buy("BuyDay") this bar on close;

If C <average(c,movAvgPeriods) then
Sell("MovAvgExit") this bar on close;
If BarsSinceEntry=4 then
Sell("4days") this bar on close;
Last Day Of Month Function and Strategy

All the code is generic except for the hard code for days that are a consequence of Good Friday.

All this code because I couldn’t sneak a peek at the date of tomorrow.  Here are the results of trading the ES futures sans execution costs for the past 15 years.

Last Day Of Month Buy If C > 50 Day Mavg

What if it did the easy way and executed the open of the first bar of the month.

If c > average(c,50) and month(d) <> month(d of tomorrow) then 
buy next bar at open;

If barsSinceEntry >=3 then
sell next bar at open;

If marketPosition = 1 and c < average(c,50) then
sell next bar at open;
Buy First Day Of Month
First Day of Month If C > 50 Day Mavg

The results aren’t as good but it sure was easier to program.

TradingSimula-18 Version

Since you can use daily bars we can test this with my TradingSimula-18 Python platform.  And we will execute on the close of the month.  Here is the snippet of code that you have to concern yourself with.  Here I am using Sublime Text and utilizing their text collapsing tool to hide non-user code:

Small Snippet of TS-18 Code

This was easy to program in TS-18 because I do allow Future Leak – in other words I will let you sneak a peek at tomorrow’s values and make a decision today.  Now many people might say this is a huge boo-boo, but with great power comes great responsibility.  If you go in with eyes wide open, then you will only use the data to make things easier or even doable, but without cheating.  Because you are only going to cheat yourself.  Its in your best interest do follow the rules.  Here is the line that let’s you leak into the future.

If isNewMonth(myDate[curBar+1])

The curBar is today and curBar+1 is tomorrow.  So I am saying if tomorrow is the first day of the month then buy today’s close.  Here you are leaking into the future but not taking advantage of it.  We all know if today is the last day of the month, but try explaining that to a computer.  You saw the EasyLanguage code.  So things are made easier with future leak, but not taking advantage of .

Here is a quick video of running the TS-18 Module of 4 different markets.

 

Ratio Adjusted versus Point Adjusted Contracts in TradeStation Part 2

Thomas Stridsman quote from  his “Trading Systems That Work Book”

The benefits of the RAD contract also become evident when you want to put together a multimarket portfolio…For now we only state that the percentage based calculations do not take into consideration how many contracts you’re trading and, therefore, give each market an equal weighting in the portfolio.

The Stridsman Function I presented in the last post can be used to help normalize a portfolio of different markets.  Here is a two market portfolio (SP – 250price and JY -125Kprice contract sizes) on a PAD contract.

1-Contract SP and JY on PAD data

Here is the performance of the same portfolio on a RAD contract.

Equal rating of SP and JY on RAD data

 

The curve shapes are similar but look at the total profit and the nearly $125K draw down.  I was trying to replicate Thomas’ research so this data is from Jan. 1990 to Dec. 1999.  A time period where the price of the SP increased 3 FOLD!  Initially you would start trading 1 JY to 2 SP but by the time it was over you would be trading nearly 3 JY to 1 SP.  Had you traded at this allocation the PAD numbers would be nearly $240K in profit.  Now this change occurred through time so the percentage approach is applied continuously.  Also the RAD data allows for a somewhat “unrealistic” reinvestment or compounding mechanism.  Its unrealistic because you can’t trade a partial futures contract.  But it does give you a glimpse of the potential.  The PAD test does not show reinvestment of profit.  I have code for that if you want to research that a little bit more.  Remember everything is in terms of Dec. 31 1999 dollars.  That is another beauty of the RAD contract.

Another Stridsman Quote

Now, wait a minute, you say, those results are purely hypothetical.  How can I place all the trades in the same market at presumably the same point in time?  Well, you can’t, so that is a good and valid question; but let me ask you, can you place any of these trades for real, no matter, how you do it?  No, of course not.  They all represent foregone opportunities.  Isn’t it better then to at least place them hypothetically in today’s marketplace to get a feel for what might happen today, rather in a ten-year-old market situation to get a feel for how the situation was back then?  I think wall can agree that it is better to know what might happen today, rather than what happened ten years ago.

That is a very good point.  However, convenience and time is import and when developing an algorithm.  And most platforms, including my TS-18, are geared toward PAD data.  However TS-18 can look at the entire portfolio balance and all the market data for each market up to that point in time and can adjust/normalize based on portfolio and data metrics.  However, I will add a percentage module a little later, but I would definitely use the StridsmanFunc that I presented in the last post to validate/verify your algorithm in today’s market place if using TradeStation.

Email me if you want the ELD of the function.

Ratio Adjusted versus Pointed Adjusted Contracts in TradeStation – Part 1

If you play around with TradeStation’s custom futures capabilities you will discover you can create different adjusted continuous contracts.  Take a look at this picture:

Panama vs Ratio Adjusted

Both charts look the same and the trades enter and exit at the same locations in relation to the respective price charts.   However, take a look at the Price Scale on the right and the following pictures.

As you can see from the P/L from each trade list there is a big difference.  The top list is using RAD and the second is the generally accepted Panama Adjusted Data (PAD.)  Ratio adjusted data takes the percentage difference between the expiring contract and the new contract and propagates the value throughout the entire back history.  This is different than the PAD we have all used, where the actual point difference is propagated.  These two forms of adjustment have their own pros and cons but many industry leaders prefer the RAD.  I will go over a little bit of the theory in my next post, but in the mean time I will direct you to Thomas Stridsman’s excellent work on the subject in his book, “Trading Systems That Work – Building and Evaluating Effective Trading Systems”.

Here is another look at draw down metrics between the two formats.

RAD V PAD DrawDown

Who would want to trade a system on 1 contract of crude and have a $174K draw down?  Well you can’t look at it like that.  Back in 2008 crude was trading at $100 X 1000 = $100,000 a contract.  Today May 11th 2020 it is around $25,000.  So a drawdown of $44K back then would be more like $176K in today’s terms.  In my next post I will go over the theory of  RAD, but for right now you just need to basically ignore TradeStation’s built in performance metrics and use this function that I developed in most part by looking at Thomas’ book.

//Name this function StridsmanFunc1

Vars: FName(""), offset(1),TotTr(0), Prof(0), CumProf(1), ETop(1), TopBar(0), Toplnt(0),BotBar(0), Botlnt(0), EBot(1), EDraw(1), TradeStr2( "" );
Arrays: tradesPerArr[1000](0),drawDownArr[1000](0);
Vars: myEntryPrice(0),myEntryDate(0),myMarketPosition(0),myExitDate(0),myExitPrice(0);
If CurrentBar = 1 Then
Begin
FName = "C:\Temp\" + LeftStr(GetSymbolName, 3) + ".csv";
FileDelete(FName);
TradeStr2 = "E Date" + "," + "Position" + "," + "E Price" + "," + "X Date" +"," + "X Price" + "," + "Profit" + "," + "Cum. prof." + "," + "E-Top" + "," +"E-Bottom" + "," + "Flat time" + "," + "Run up" + "," + "Drawdown" +NewLine;
FileAppend(FName, TradeStr2);
End;
TotTr = TotalTrades;
If TotTr > TotTr[1] or (lastBarOnChart and marketPosition <> 0) Then
Begin

if TotTr > TotTr[1] then
begin
if (EntryPrice(1) <> 0) then Prof = 1 + PositionProfit(1)/(EntryPrice(1) * BigPointValue);
End
else
begin
Value99 = iff(marketPosition = 1,c - entryPrice, entryPrice - c);
Prof = 1 + (Value99*bigPointValue) /(Entryprice *BigPointValue);
// print(d," StridsmanFunc1 ",Value99," ",Prof," ",(Value99*bigPointValue) /(Entryprice *BigPointValue):5:4);
TotTr = totTr + 1;
end;
tradesPerArr[TotTr] = Prof - 1;
CumProf = CumProf * Prof;
ETop = MaxList(ETop, CumProf);
If ETop > ETop[1] Then
Begin
TopBar = CurrentBar;
EBot = ETop;
End;

EBot = MinList(EBot, CumProf);

If EBot<EBot[1] Then BotBar = CurrentBar;

Toplnt = CurrentBar - TopBar;

Botlnt = CurrentBar - BotBar;

if ETop <> 0 then EDraw = CumProf / ETop;

drawDownArr[TotTr] = (EDraw - 1);

myEntryDate = EntryDate(1);
myMarketPosition = MarketPosition(1);
myEntryPrice = EntryPrice(1);
myExitDate = ExitDate(1);
myExitPrice = ExitPrice(1);
If lastBarOnChart and marketPosition <> 0 then
Begin
myEntryDate = EntryDate(0);
myMarketPosition = MarketPosition(0);
myEntryPrice = EntryPrice(0);
myExitDate = d;
myExitPrice =c;
end;
TradeStr2 = NumToStr(myEntryDate, 0) + "," +NumToStr(myMarketPosition, 0) + "," + NumToStr(myEntryPrice, 2) + ","
+ NumToStr(myExitDate, 0) + "," + NumToStr(myExitPrice, 2) + ","+ NumToStr((Prof - 1) * 100, 2) + "," + NumToStr((CumProf - 1) *100, 2) + ","
+ NumToStr((ETop - 1) * 100, 2) + "," + NumToStr((EBot - 1) * 100, 2) + "," + NumToStr(Toplnt, 0) + "," + NumToStr(Botlnt, 0) + "," + NumToStr((EDraw - 1) * 100, 2) +
NewLine;

FileAppend(FName, TradeStr2);
End;
vars: tradeStr3(""),
ii(0),avgTrade(0),avgTrade$(0),cumProf$(0),trdSum(0),
stdDevTrade(0),stdDevTrade$(0),
profFactor(0),winTrades(0),lossTrades(0),perWins(0),perLosers(0),
largestWin(0),largestWin$(0),largestLoss(0),largestLoss$(0),avgProf(0),avgProf$(0),
winSum(0),lossSum(0),avgWin(0),avgWin$(0),avgLoss(0),avgLoss$(0),maxDD(0),maxDD$(0),cumProfit(0),cumProfit$(0);

If lastBarOnChart then
begin
stdDevTrade = standardDevArray(tradesPerArr,TotTr,1);
stdDevTrade$ = stdDevTrade*c*bigPointValue;
For ii = 1 to TotTr
Begin
trdSum = trdSum + tradesPerArr[ii];
// print(d," ",ii," ",tradesPerArr[ii]);
If tradesPerArr[ii] > 0 then
begin
winTrades = winTrades + 1;
winSum = winSum + tradesPerArr[ii];
end;
If tradesPerArr[ii] <=0 then
begin
lossTrades = lossTrades + 1;
lossSum = lossSum + tradesPerArr[ii];
end;
If tradesPerArr[ii] > largestWin then
begin
largestWin = tradesPerArr[ii];
// print("LargestWin Found ",largestWin);
end;
If tradesPerArr[ii] < largestLoss then largestLoss = tradesPerArr[ii];
If drawDownArr[ii] < maxDD then maxDD = drawDownArr[ii];
end;
// print("TradeSum: ",trdSum);
if TotTr <> 0 then avgTrade = trdSum/TotTr;
avgTrade$ = avgTrade*c*bigPointValue;
largestWin = largestWin;
largestLoss = largestLoss;
largestWin$ = largestWin*c*bigPointValue;
largestLoss$ = largestLoss*c*bigPointValue;
if TotTr <> 0 then perWins = winTrades/TotTr;
if TotTr <> 0 then perLosers = lossTrades/TotTr;
If winTrades <> 0 then avgWin = winSum / winTrades;
avgWin$ = avgWin*c*bigPointValue;
if lossTrades <> 0 then avgLoss= lossSum / lossTrades;
avgLoss$ = avgLoss*c*bigPointValue;
maxDD$ = maxDD *c*bigPointValue;
if lossTrades <>0 and avgLoss$ <> 0 then profFactor = (winTrades*avgWin$)/(lossTrades*avgLoss$);
CumProf = cumProf - 1;
CumProf$ = cumProf*c*bigPointValue;

TradeStr3 = "Total Trades,,"+NumToStr(TotTr,0)+",Num. Winners,"+NumToStr(winTrades,0)+","+NumToStr(perWins,3)+", Num. Losses,"+NumToStr(lossTrades,0)+","+NumToStr(perLosers,3)+NewLine+
"Profit Factor,,"+NumToStr(profFactor,3)+",Largest Win ,"+NumToStr(largestWin,3)+","+NumToStr(largestWin$,0)+",Largest Loss,"+NumToStr(largestLoss,3)+","+NumToStr(largestLoss$,0)+NewLine+
"Avg Profit,"+NumToStr(avgTrade,3)+","+NumToSTr(avgTrade$,0)+",Avg Win,"+NumToStr(avgWin,3)+","+NumToStr(avgWin$,0)+",Avg Loss,"+NumToStr(avgLoss,3)+","+NumToStr(avgLoss$,0)+NewLine+
"Std. Dev,"+NumToStr(stdDevTrade,3)+","+NumToStr(stdDevTrade$,0)+",Cum Profit,"+NumToStr(cumProf,3)+","+NumToStr(cumProf$,3)+",Draw Down,"+numToStr(maxDD,3)+","+numToStr(maxDD$,0)+NewLine;
FileAppend(FName, TradeStr3);
{ Print("Total Trades ",totalTrades," Num. Winners ",winTrades," ",perWins," Num. Losses ",lossTrades," ",perLosers);
Print("Profit Factor ",profFactor," Largest Win ",largestWin:5:2," ",largestWin$," Largest Loss ",largestLoss:5:2," ",largestLoss$);
Print("Avg Profit ",avgTrade," ",avgTrade$," Avg Win ",avgWin," ",avgWin$," Avg Loss ",avgLoss," ",avgLoss$);
Print("St Dev ",stdDevTrade," ",stdDevTrade$," Cum Profit ",cumProf," ",cumProf$," Drawdown ",maxDD," ",maxDD$);}


end;



StridsmanFunc1 = 1;
Conversion of Performance Metrics to Percentages Instead of $Dollars

This function will out put a file that looks like this.  Go ahead and play with the code – all you have to do is call the function from within an existing strategy that you are working with.  In part two I will go over the code and explain what its doing and how arrays and strings were used to archive the trade history and print out this nifty table.

Stridsman Function Output.

In this output if you treat the return from each trade as a function of the entry price and accumulate the returns you can convert the value to today’s current market price of the underlying.  In this case a 15 -year test going through the end of last year, ended up making almost $70K.

RAD TradeStation Metrics:

Profit $350K – Draw Down $140K

PAD TradeStation Metrics:

Profit $89K – Draw Down $45K

Stridsman Func on RAD:

Profit $70K – Draw Down $48K

At this point you can definitely determine that the typical RAD/TS metrics are not all that usuable.  The PAD/TS results look very similar to RAD/StridsmanFunc results.  Stay tuned for my next post and I will hopefully explain why RAD/StridsmanFunc is probably the most accurate performance metrics of the three.

Free Trend Following System with Indicator Tracker

Free Trend Following System

Here is a free Trend Following System that I read about on Andreas Clenow’s www.followthetrend.com website and from his book.  This is my interpretation of the rules as they were explained.  However the main impetus behind this post wasn’t to provide a free trading system, but to show how you can program a simple system with a complete input interface and program a tracking indicator.   You might be asking what is a “tracking indicator?”  We use a tracking indicator to help provide insight to what the strategy is doing and what it might do in the near future.  The indicator can let you know that a new signal is imminent and also what the risk is in a graphical form.  The indicator can also plot the indicators that are used in the strategy itself.

Step 1:  Program the Strategy

This system is very simple.  Trade on a 50 day Donchian in the direction of the trend and use a 3 X ATR trailing stop.  So the trend is defined as bullish when the 50-day exponential moving average is greater than the 100-day exponential moving average.  A bearish trend is defined when the 50-day is below the 100-day.  Long positions are initiated on the following day when a new 50 day high has been established and the trend is bullish.  Selling short occurs when the trend is bearish and a new 50 day low is establish.  The initial stop  is set to 3 X ATR below the high of the day of entry.  I tested using a 3 X ATR stop initially from the entryPrice for protection on the day of entry, but it made very little difference.  As the trade moves more into your favor, the trailing stop ratchets up and tracks the higher intra-trade extremes.  Eventually once the market reverses you get stopped out of a long position 3 X ATR from the highest high since you entered the long trade.  Hopefully, with a big winner.   The Clenow model also uses a position sizing equation that uses ATR to determine market risk and $2000 for the allocated amount to risk.  Size= 2000 / ATR – this equation will normalize size across a portfolio of markets.

Here is the code.

//Based on Andreas Clenow's description from www.followingthetrend.com
//This is my interpretation and may or may not be what Andreas intended
//Check his books out at amazon.com
//
inputs: xAvgShortLen(50),xAvgLongLen(100),hhllLen(50),buyTrigPrice(h),shortTrigPrice(l),risk$Alloc(2000);
inputs: atrLen(30),trailATRMult(3);
vars: avg1(0),avg2(0),lXit(0),sXit(0),posSize(0),atr(0);

avg1 = xaverage(c,xAvgShortLen);
avg2 = xaverage(c,xAvgLongLen);

atr = avgTrueRange(atrLen);
posSize = maxList(1,intPortion(risk$Alloc/(atr*bigPointValue)));

If marketPosition <> 1 and avg1 > avg2 and buyTrigPrice = highest(buyTrigPrice,hhllLen) then buy posSize contracts next bar at open;
If marketPosition <> -1 and avg1 < avg2 and shortTrigPrice = lowest(shortTrigPrice,hhllLen) then sellshort posSize contracts next bar at open;

If marketPosition = 0 then
Begin
lXit = o - trailATRMult * atr ;
sXit = o + trailATRMult * atr;
// if c < lXit then Sell currentcontracts contracts next bar at open;
// If c > sXit then buyToCover currentcontracts contracts next bar at open;
end;

If marketPosition = 1 then
begin
lXit = maxList(lXit,h - trailATRMult * atr);
If c < lXit then sell currentContracts contracts next bar at open;
end;

If marketPosition = -1 then
begin
sXit = minList(sXit,l + trailATRMult * atr);
If c > sXit then buyToCover currentContracts contracts next bar at open;
end;
Cleanow Simple Trend Following System

What I like about this code is how you can use it as a template for any trend following approach.  All the variables that could be optimized are included as inputs.  Many may not know that you can actually change the data series that you want to use as your signal generator right in the input.  Here I have provided two inputs : buyTrigPrice(H), shortTrigPrice(L).  If you want to use the closing price, then all you need to do is change the H and L to C.  The next lines of code performs the calculations needed to calculate the trend.  PosSize is then calculated next.  Here I am dividing the variable risk$Alloc by atr*bigPointValue.  Basically I am taking $2000 and dividing the average true range over the past 30 days multiplied by the point value of the market being tested.  Always remember when doing calculations with $s you have to convert whatever else you are using into dollars as well.  The ATR is expressed in the form of a price difference.  You can’t divide dollars by a price component, hence the multiplication by bigPointValue.  So now we have the trend calcuation and the position sizing taken care of and all we need now is the trend direction and the entry levels.  If avg1 > avg2 then the market is in a bullish posture, and if today’s High = highest(High,50) days back then initiate a long position with posSize contracts at the next bar’s openNotice how I used the keyword contracts after posSize.  This let’s TS know that I want to trade more than one contract.  If the current position is flat I set the lXit and sXit price levels to the open -/+ 3 X ATR.  Once a position (long or short) is initiated then I start ratcheting the trailing stop up or down.  Assuming a long position, I compare the current lXit and the current bar’s HIGH- 3 X ATR and take the larger of the two valuesSo lXit always moves up and never down.  Notice if the close is less than lXit I used the keyword currentContracts and contracts in the directive to exit a long trade.  CurrentContracts contains the current number of contracts currently long and contracts informs TS that more than one contract is being liquidated.  Getting out of a short position is exactly the same but in a different direction.

Step 2: Program the System Tracking Indicator

Now you can take the exact code and eliminate all the order directives and use it to create a tracking indicator.  Take a look at this code:

//Based on Andreas Clenow's description from www.followingthetrend.com
//This is my interpretation and may or may not be what Andreas intended
//Check his books out at amazon.com
//
inputs: xAvgShortLen(50),xAvgLongLen(100),hhllLen(50),buyTrigPrice(h),shortTrigPrice(l);
inputs: atrLen(30),trailATRMult(3);
vars: avg1(0),avg2(0),lXit(0),sXit(0),posSize(0),atr(0),mp(0);

avg1 = xaverage(c,xAvgShortLen);
avg2 = xaverage(c,xAvgLongLen);

atr = avgTrueRange(atrLen);

plot1(avg1,"stXavg");
plot2(avg2,"ltXavg");

If avg1[1] > avg2[1] and buyTrigPrice[1] = highest(buyTrigPrice[1],hhllLen) then mp = 1;
If avg1[1] < avg2[1] and shortTrigPrice[1] = lowest(shortTrigPrice[1],hhllLen) then mp = -1;

If mp = 0 then
Begin
lXit = o - trailATRMult * atr ;
sXit = o + trailATRMult * atr;
end;

If mp = 1 then
begin
lXit = maxList(lXit,h - trailATRMult * atr);
plot3(lXit,"LongTrail");
If c < lXit then mp = 0;
end;

If mp = -1 then
begin
sXit = minList(sXit,l + trailATRMult * atr);
plot4(sXit,"ShortTrail");
If c > sXit then mp = 0;
end;

However, you do need to keep track if the underlying strategy is long or short and you can do this by pretending you are the computer and using the mp variable.  You know if yesterdays avg1 > avg2 and HIGH[1] = highestHigh(HIGH[1],50), then a long position should have been initiated.  If this happens just set mp to 1You set mp to -1 by checking the trend and lowestLow(LOW[1],50).  Once you know the mp or implied market position then you can calculate the lXit and sXit.  You will always plot the moving averages to help determine trend direction, but you only plot the lXit and sXit when a position is on.  So plot3 and plot4 should only be plotted when a position is long or short.

Here is a screenshot of the strategy and tracking indicator.

Notice how the Yellow and Cyan plots follow the correct market position.  You will need to tell TS not to connect these plot lines when they are not designed to be plotted.

Turn-Off Auto Plot Line Connection

Do this for Plot3 and Plot4 and you will be good to go.

I hope you found this post useful.  Also don’t forget to check out my new book at Amazon.com.  If you really want to learn programming that will help across different platforms I think it would be a great learning experience.

 

A Christmas Project for TradeStation Day-Traders

Here is a neat little day trader system that takes advantage of what some technicians call a “CLEAR OUT” trade.  Basically traders push the market through yesterday’s high and then when everybody jumps on board they pull the rug out from beneath you.  This strategy tries to take advantage of this.  As is its OK, but it could be made into a complete system with some filtering.  Its a neat base to start your day-trading schemes from.

But first have you ever encountered this one when you only want to go long once during the day.

I have logic that examines marketPosition, and if it changes from a non 1 value to 1 then I increment buysToday.  Since there isn’t an intervening bar to establish a change in marketPosition, then buysToday does not get incremented and another buy order is issued.  I don’t want this.  Remember to plot on the @ES.D.

Here’s how I fixed it and also the source of the CLEAR-OUT day-trade in its entirety.  I have a $500 stop and a $350 take profit, but it simply trades way too often.  Have fun with this one – let me now if you come up with something.

inputs: clearOutAmtPer(0.1),prot$Stop(325),prof$Obj(500),lastTradeTime(1530);

vars: coBuy(false),coSell(false),buysToday(0),sellsToday(0),mp(0),totNumTrades(0);

If d <> d[1] then
Begin
coBuy = false;
coSell = false;
buysToday = 0;
sellsToday = 0;
totNumTrades = totalTrades;
end;


mp = marketPosition;
If mp[1] <> mp and mp = 1 then buysToday = buysToday + 1;
If mp[1] <> mp and mp = -1 then sellsToday = sellsToday + 1;

If h > highD(1) + clearOutAmtPer * (highD(1) - lowD(1)) then coSell = true;
If l < lowD(1) - clearOutAmtPer * (highD(1) - lowD(1)) then coBuy = true;

If totNumTrades <> totalTrades and mp = 0 and mp[1] = 0 and positionProfit(1) < 0 and entryPrice(1) > exitPrice(1) then buysToday = buysToday + 1;
If totNumTrades <> totalTrades and mp = 0 and mp[1] = 0 and positionProfit(1) < 0 and entryPrice(1) < exitPrice(1) then sellsToday =sellsToday + 1;

totNumTrades = totalTrades;

If buysToday = 0 and t < lastTradeTime and coBuy = true then buy ("COBuy") next bar at lowD(1) + minMove/priceScale stop;
If sellsToday = 0 and t < lastTradeTime and coSell = true then sellShort ("COSell") next bar at highD(1) - minMove/priceScale stop;

setStopLoss(prot$stop);
Setprofittarget(prof$Obj);
setExitOnClose;
Look at lines 22 and 23 - the entry/exit same bar fix