Category Archives: EasyLanguage Tutorial

Passing and Accessing Multidimensional Array in a Function

Before the days of OOEL and more advanced data structures, such as vectors, you had to work with multidimensional arrays.

The problem with arrays is you have to do all the housekeeping whereas with vectors the housekeeping is handled internally.  Yes, vectors in many cases would be the most efficient approach, but if you are already using Multi-D arrays, then mixing the two could become confusing.  So stick with the arrays for now and progress into vectors at your leisure.

Recreate the CCI indicator with Multi-D Array

This exercise is for demonstration purposes only as the existing CCI function works just fine.  However, when you are trying out something new  or in this case an application of a different data structure (array) its always great to check your results against a known entity.  If your program replicates the known entity, then you know that you are close to a solution.  The CCI function accesses data via the global High, Low and Close data streams and then applies a mathematical formula to derive a result. <

Derive Your Function First

Create the function first by prototyping what the function will need in the formal parameter list (funciton header).   The first thing the function will need is the data – here is what it will look like.

  • OHLCArray[1,1] =  1210903.00 // DATE
  • OHLCArray[1,2] =    4420.25 // OPEN
  • OHLCArray[1,3] =    4490.25 // HIGH
  • OHLCArray[1,4] =    4410.25 // LOW
  • OHLCArray[1,5] =    4480.75 // CLOSE
  • OHLCArray[2,1] =  1210904.00 // DATE
  • OHLCArray[2,2] =    4470.25 // OPEN
  • OHLCArray[2,3] =    4490.25 // HIGH
  • OHLCArray[2,4] =    4420.25 // LOW
  • OHLCArray[2,5] =    4440.75 // CLOSE

Visualize 2-D Array as a Table

Column 1 Column 2 Column 3 Column 4 Column 5
1210903 44202.25 4490.25 4410.25 4480.75
1210904 4470.25 4490.25 4420.25 4440.76
The CCI function is only concerned with H, L, C and that data is in columns 3, 4, 5.  If you know the structure of the array before you program the function, then you now which columns or fields you will need to access.  If you don’t know the structure beforehand , then that information would need to be passed into the function as well.   Let us assume we know the structure.  Part of the housekeeping that I mentioned earlier was keeping track of the current row where the latest data is being stored.  This “index” plus the length of the CCI indicator is the last two things we will need to know to do a proper calculation.

CCI_2D Function Formal Parameter List

// This function needs data, current data row, and length
// Notice how I declare the OHLCArray using the dummy X and Y
// Variable - this just tells TradeStation to expect 2-D array
// ------------------
// | |
// * *
inputs: OHLCArray[x,y](numericArray), currentRow(numericSimple), length(numericSimple);
// ***
// |||
//----------------------------
// Also notice I tell TradeStation that the array is of type numeric
// We are not changing the array but if we were, then the type would be
// numericArrayRef - the actual location in memory not just a copy
CCI_2D Formal Parameter List

2-D Array Must Run Parallels with Actual Data

The rest of the function expects the data to be just like the H, L, C built-in data – so there cannot be gaps.  This is very important when you pack the data and  you will see this in the function driver code a.k.a an indicator. The data needs to align with the bars.  Now if you are using large arrays this can slow things down a bit.  You can also shuffle the array and keep the array size to a minimum and I will post how to do this in a post later this week.  The CCI doesn’t care about the order of the H,L,C as long as the last N element is the latest values.

variables: 	
Mean( 0 ),sum1(0),sum2(0),
AvgDev( 0 ),rowNum(0),
Counter( 0 ) ;


AvgDev = 0 ;
if currentRow > length then // make sure enough rows
begin

sum1 = 0;
sum2 = 0;
for rowNum = currentRow - (length-1) to currentRow
begin
value1 = OHLCArray[rowNum,3];
value2 = OHLCArray[rowNum,4];
value3 = OHLCArray[rowNum,5];
sum1 = sum1 + value1 + value2 + value3;
end;
//Mean = Average( H + L + C, Length ) ; { don't have to divide H+L+C by 3, cancels out }
Mean = sum1/length;
print(d," Mean ",mean," ",mean/3);

for rowNum = currentRow - (length-1) to currentRow
begin
value1 = OHLCArray[rowNum,3];
value2 = OHLCArray[rowNum,4];
value3 = OHLCArray[rowNum,5];
sum2 = sum2 + AbsValue((value1 + value2 + value3) - Mean);
end ;
// AvgDev = AvgDev + AbsValue( ( H + L + C )[Counter] - Mean ) ;
AvgDev = sum2 / Length ;
print(d," avgDev ",AvgDev," ",AvgDev/3);

value1 = OHLCArray[currentRow,3];
value2 = OHLCArray[currentRow,4];
value3 = OHLCArray[currentRow,5];
end;

if AvgDev = 0 then
CCI_2D = 0
else
CCI_2D = ( value1 + value2 + value3 - Mean ) / ( .015 * AvgDev ) ;
CCI-2D Function
This function could be streamlined, but I wanted to show you how to access the different data values with the currentRow variable and columns 3, 4, and 5.  I extract these data and store them in Values variables.  Notice the highlighted line where I check to make sure there are enough rows to handle the calculation.  If you try to access data before row #1, then you will get an out of bounds error and a halt to program execution.

Function Driver in the form of an Indicator

array: OHLCArray[5000,5](0);
Inputs: CCI2DLen(14),CCILen(14);

vars: numRows(0),myCCI(0),regCCI(0);

numRows = numRows + 1;
OHLCArray[numRows,1] = d;
OHLCArray[numRows,2] = o;
OHLCArray[numRows,3] = h;
OHLCArray[numRows,4] = l;
OHLCArray[numRows,5] = c;

myCCI = CCI_2D(OHLCArray,numRows,14);
regCCI = CCI(14);

plot1(myCCI," CCI_2D ");
plot2(regCCI," CCI ");
CCI-2D Indicator

Notice lines 16 and 17 where I am plotting both function results – my CCI_2D and CCI.   Also notice how I increment numRows on each bar – this is the housekeeping that keeps that array synched with the chart.  In the following graphic I use 14 for CCI_2D and 9 for the built-in CCI.

Two CCI functions with different Lengths

Now the following graphic uses the same length parameters for both functions.  Why did just one line show up?

Both CCI Functions with same Lengths – were did second line go to?

Make Your Unique Coding Replicate a Known Entity – If You Can

 

Here is where your programming is graded.  The replication of the CCI using a 2-D Array instead of the built-in H, L, C data streams, if programmed correctly, should create the exact same results and it does, hence the one line.  Big Deal right!  Why did I go through all this to do something that was already done?  Great programming is not supposed to re-invent the wheel.  And we just did exactly that.  But read between the lines here.   We validated code that packed a 2-D array with data and then passed it to a function that then accessed the data correctly and applied a known formula and compared it to a known entity.  So now you have re-usable code for passing a 2-D array to a function.  All you have to do is use the template and modify the calculations.  Re-inventing the wheel is A-Okay if you are using it as a tool for validation.

The Foundation Edition – First Book In Easing Into EasyLanguage

Hello to All!  I just published the first book in this series.  It is the Foundation Edition and is designed for the new user of EasyLanguage or for those you would like to have a refresher course.  There are 13 total tutorials ranging from creating Strategies to PaintBars.  Learn how to create your own functions or apply stops and profit objectives.  Ever wanted to know how to find an inside day that is also a Narrow Range 7 (NR7?)  Now you can, and the best part is you get over 4 HOURS OF VIDEO INSTRUCTION – one for each tutorial.  Each video is created by yours truly and Beau my trustworthy canine companion.  I go over every line of code to really bring home the concepts that are laid out in each tutorial.  All source code is available too, and if you have TradeStation, so are the workspaces.  Plus you can always email George for any questions.  george.p.pruitt@gmail.com.

The Cover of my latest book. The first in the series.

If you like the information on my blog, but find the programming code a little daunting, then go back and build a solid foundation with the Foundation Edition.  It starts easy but moves up the Learning Curve at comfortable pace.  On sale now for $24.95 at Amazon.com.  I am planning on having two more advanced books in the series.  The second book, specifically designed for intraday trading and day-trading, will be available this winter.  And the third book, Advanced Topics, will be available next spring.

Pick up your copy today – e-Book or Paperback format!

Here is the link to buy the book now!

Let me know if you buy either format  and I will send you a PDF of the source code – just need proof of purchase.  With the  PDF you can copy and paste the code.  After you buy the book come back here to the Easing Into EasyLanguage Page and download  the ELD and workspaces.

Why Do I Need to Test with Intraday Data

Why Can’t I Just Test with Daily Bars and Use Look-Inside Bar?

Good question.  You can’t because it doesn’t work accurately all of the time.   I just default to using 5 minute or less bars whenever I need to.  A large portion of short term, including day trade, systems need to know the intra day market movements to know which orders were filled accurately.  It would be great if you could just flip a switch and convert a daily bar system to an intraday system and Look Inside Bar(LIB) is theoretically that switch.  Here I will prove that switch doesn’t always work.

Daily Bar System

  • Buy next bar at open of the day plus 20% of the 5 day average range
  • SellShort next at open of the day minus 20% of the 5 day average range
  • If long take a profit at one 5 day average range above entryPrice
  • If short take a profit at one 5 day average range below entryPrice
  • If long get out at a loss at 1/2 a 5 day average range below entryPrice
  • If short get out at a loss at 1/2 a 5 day average range above entry price
  • Allow only 1 long and 1 short entry per day
  • Get out at the end of the day

Simple Code for the System

value1 = .2 * average(Range,5);
value2 = value1 * 5;

Buy next bar at open of next bar + value1 stop;
sellShort next bar at open of next bar - value1 stop;

setProfitTarget(value2*bigPointValue);
setStopLoss(value2/2*bigPointValue);
setExitOnClose;
Simplified Daily Bar DayTrade System using ES.D Daily
Daily Bar Using 5 min Look Inside Bar

Looks great with just the one hiccup:  Bot @ 3846.75 and the Shorted @ 3834.75 and then took nearly 30 handles of profit.

Now let’s see what really happened.

What Really Happened – Bot – Shorted – Stopped Out

Intraday Code to Control Entry Time and Number of Longs and Shorts

Not an accurate representation so let’s take this really simple system and apply it to intraday data.  Approaching this from a logical perspective with limited knowledge about TradeStation you might come up with this seemingly valid solution.  Working on the long side first.

//First Attempt


if d <> d[1] then value1 = .2 * average(Range of data2,5);
value2 = value1 * 5;
if t > sess1startTime then buy next bar at opend(0) + value1 stop;
setProfitTarget(value2*bigPointValue);
setStopLoss(value2/2*bigPointValue);
setExitOnClose;
First Simple Attempt

This looks very similar to the daily bar system.  I cheated a little by using

if d <> d[1] then value1 = .2 * average(Range of data2,5);

Here I am only calculating the average once a day instead of on each 5 minute bar.  Makes things quicker.  Also I used

if t > sess1StartTime then buy next bar at openD(0) + value1 stop;

I did that because if you did this:

buy next bar at open of next bar + value1 stop;

You would get this:

Cannot Sneak a Peek with Data2

That should do it for the long side, right?

Didn’t work quite right!

So now we have to monitor when we can place a trade and monitor the number of long and short entries.

How does this look!

Correct Execution!

So here is the code.  You will notice the added complexity.  The important things to know is how to control when an entry is allowed and how to count the number of long and short entries.  I use the built-in keyword/function totalTrades to keep track of entries/exits and marketPosition to keep track of the type of entry.

Take a look at the code and you can see how the daily bar system is somewhat embedded in the code.  But remember you have to take into account that you are stepping through every 5 minute bar and things change from one bar to the next.

vars: buysToday(0),shortsToday(0),curTotTrades(0),mp(0),tradeZoneTime(False);


if d <> d[1] then
begin
curTotTrades = totalTrades;
value1 = .2 * average(Range of data2,5);
value2 = value1 * 5;
buysToday = 0;
shortsToday = 0;
tradeZoneTime = False;
end;

mp = marketPosition;

if totalTrades > curTotTrades then
begin
if mp <> mp[1] then
begin
if mp[1] = 1 then buysToday = buysToday + 1;
if mp[1] = -1 then shortsToday = shortsToday + 1;
end;
if mp[1] = -1 then print(d," ",t," ",mp," ",mp[1]," ",shortsToday);
curTotTrades = totalTrades;
end;
if t > sess1StartTime and t < sess1EndTime then tradeZoneTime = True;

if tradeZoneTime and buysToday = 0 and mp <> 1 then
buy next bar at opend(0) + value1 stop;

if tradeZoneTime and shortsToday = 0 and mp <> -1 then
sellShort next bar at opend(0) - value1 stop;

setProfitTarget(value2*bigPointValue);
setStopLoss(value2/2*bigPointValue);
setExitOnClose;
Proper Code to Replicate the Daily Bar System with Accuracy

Here’s a few trade examples to prove our code works.

Looks Right!

Okay the code worked but did the system?

Uh? NO!

Conclusion

If you need to know what occurred first – a high or a low in a move then you must use intraday data.  If you want to have multiple entries then of course your only alternative is intraday data.   This little bit of code can get you started converting your daily bar systems to intraday data and can be a framework to develop your own day trading/or swing systems.

Can I Prototype A Short Term System with Daily Data?

You can of course use Daily Bars for fast system prototyping.  When the daily bar system was tested with LIB turned on, it came close to the same results as the more accurately programmed intraday system.  So you can prototype to determine if a system has a chance.  Our core concept buyt a break out, short a break out, take profits and losses and have no overnight exposure sounds good theoretically.  And if you only allow 2 entries in opposite directions on a daily bar you can determine if there is something there.

A Dr. Jekyll and Mr. Hyde Scenario

While playing around with this I did some prototyping of a daily bar system and created this equity curve.  I mistakenly did not allow any losses – only took profits and re-entered long.

Wow! Awesome! Holy Grail Uncovered. Venalicius Cave!

Venalicius Cave!  Don’t take a loser you and will reap the benefits.  The chart says so – so its got to be true – I know right?

The same chart from a different perspective.

You Start and End at the Same Place. But What A Ride. Yikes!

Moral of the Story – always look at your detailed Equity Curve.  This curve is very close to a simple buy and hold strategy.   Maybe a little better.

Daily Bar Ratcheting Stop and Conditional Optimization

Happy New Year!  My First Post of 2021!

In this post I simply wanted to convert the intraday ratcheting stop mechanism that I previously posted into a daily bar mechanism.  Well that got me thinking of how many different values could be used as the amount to ratchet.  I came up with three:

I have had requests for the EasyLanguage in an ELD – so here it is – just click on the link and unZip.

RATCHETINGSTOPWSWITCH

Ratcheting Schemes

  • ATR of N days
  • Fixed $ Amount
  • Percentage of Standard Deviation of 20 Days

So this was going to be a great start to a post, because I was going to incorporate one of my favorite programming constructs : Switch-Case.  After doing the program I thought wouldn’t it be really cool to be able to optimize over each scheme the ratchet and trail multiplier as well as the values that might go into each scheme.

In scheme one I wanted to optimize the N days for the ATR calculation.  In scheme two I wanted to optimize the $ amount and the scheme three the percentage of a 20 day standard deviation.  I could do a stepwise optimization and run three independent optimizations – one for each scheme.  Why not just do one global optimization you might ask?  You could but it would be a waste of computer time and then you would have to sift through the results.  Huh?  Why?  Here is a typical optimization loop:

Scheme Ratchet Mult Trigger Mult Parameter 1
1 : ATR 1 1 ATR (2)
2 : $ Amt 1 1 ATR (2)
3 : % of Dev. Amt 1 1 ATR (2)
1 : ATR 2 1 ATR (2)
2 : $ Amt 2 1 ATR (2)

Notice when we switch schemes the Parameter 1 doesn’t make sense.  When we switch to $ Amt we want to use a $ Value as Parameter 1 and not ATR.  So we could do a bunch of optimizations across non sensical values, but that wouldn’t really make a lot of sense.  Why not do a conditional optimization?  In other words, optimize only across a certain parameter range based on which scheme is currently being used.  I knew there wasn’t an overlay available to use using standard EasyLanguage but I thought maybe OOP,  and there is an optimization API that is quite powerful.  The only problem is that it was very complicated and I don’t know if I could get it to work exactly the way I wanted.

EasyLanguage is almost a full blown programming language.  So should I not be able to distill this conditional optimization down to something that I could do with such a powerful programming language?  And the answer is yes and its not that complicated.  Well at least for me it wasn’t but for beginners probably.  But to become a successful programmer you have to step outside your comfort zones, so I am going to not only explain the Switch/Case construct (I have done this in earlier posts)  but incorporate some array stuff.

When performing conditional optimization there are really just a few things you have to predefine:

  1. Scheme Based Optimization Parameters
  2. Exact Same Number of Iterations for each Scheme [starting point and increment value]
  3. Complete Search Space
  4. Total Number of Iterations
  5. Staying inside the bounds of your Search Space

Here are the optimization range per scheme:

  • Scheme #1 – optimize number of days in ATR calculation – starting at 10 days and incrementing by 2 days
  • Scheme #2 – optimize $ amounts – starting at $250 and incrementing by $100
  • Scheme #3 – optimize percent of 20 Bar standard deviation – starting at 0,25 and incrementing by 0.25

I also wanted to optimize the ratchet and target multiplier.  Here is the base code for the daily bar ratcheting system with three different schemes.  Entries are based on penetration of 20 bar highest/lowest close.

inputs: 
ratchetMult(2),trailMult(2),
volBase(True),volCalcLen(20),
dollarBase(False),dollarAmt(250),
devBase(False),devAmt(0.25);


vars:longMult(0),shortMult(0);
vars:ratchetAmt(0),trailAmt(0);
vars:stb(0),sts(0),mp(0);
vars:lep(0),sep(0);



if volBase then
begin
ratchetAmt = avgTrueRange(volCalcLen) * ratchetMult;
trailAmt = avgTrueRange(volCalcLen) * trailMult;
end;
if dollarBase then
begin
ratchetAmt =dollarAmt/bigPointValue * ratchetMult;
trailAmt = dollarAmt/bigPointValue * trailMult;
end;
if devBase then
begin
ratchetAmt = stddev(c,20) * devAmt * ratchetMult;
trailAmt = stddev(c,20) * devAmt * trailMult;
end;


if c crosses over highest(c[1],20) then buy next bar at open;
if c crosses under lowest(c[1],20) then sellshort next bar at open;

mp = marketPosition;
if mp <> 0 and mp[1] <> mp then
begin
longMult = 0;
shortMult = 0;
end;


If mp = 1 then lep = entryPrice;
If mp =-1 then sep = entryPrice;


// Okay initially you want a X point stop and then pull the stop up
// or down once price exceeds a multiple of Y points
// longMult keeps track of the number of Y point multiples of profit
// always key off of lep(LONG ENTRY POINT)
// notice how I used + 1 to determine profit
// and - 1 to determine stop level

If mp = 1 then
Begin
If h >= lep + (longMult + 1) * ratchetAmt then longMult = longMult + 1;
Sell("LongTrail") next bar at (lep + (longMult - 1) * trailAmt) stop;
end;

If mp = -1 then
Begin
If l <= sep - (shortMult + 1) * ratchetAmt then shortMult = shortMult + 1;
buyToCover("ShortTrail") next bar (sep - (shortMult - 1) * trailAmt) stop;
end;
Daily Bar Ratchet System

This code is fairly simple.  The intriguing inputs are:

  • volBase [True of False] and  volCalcLen [numeric Value]
  • dollarBase [True of False] and  dollarAmt [numeric Value]
  • devBase [True of False] and devAmt [numeric Value]

If volBase is true then you use the parameters that go along with that scheme.  The same goes for the other schemes.  So when you run this you would turn one scheme on at a time and set the parameters accordingly.  if I wanted to use dollarBase(True) then I would set the dollarAmt to a $ value.  The ratcheting mechanism is the same as it was in the prior post so I refer you back to that one for further explanation.

So this was a pretty straightforward strategy.  Let us plan out our optimization search space based on the different ranges for each scheme.  Since each scheme uses a different calculation we can’t simply optimize across all of the different ranges – one is days, and the other two are dollars and percentages.

Enumerate

We know how to make TradeStation loop based on the range of a value.  If you want to optimize from $250 to $1000 in steps of $250, you know this involves [$1000 – $250] / $250 + 1 or 3 + 1 or 4 interations.   Four loops will cover this entire search space.  Let’s examine the search space for each scheme:

  • ATR Scheme: start at 10 bars and end at 40 by steps of 2 or [40-10]/2 + 1 = 16
  • $ Amount Scheme: start at $250 and since we have to have 16 iterations [remember # of iterations have to be the same for each scheme] what can we do to use this information?  Well if we start $250 and step by $100 we cover the search space $250, $350, $450, $550…$1,750.  $250 + 15 x 250.  15 because $250 is iteration 1.
  • Percentage StdDev Scheme:  start at 0.25 and end at 0.25 + 15 x 0.25  = 4

So we enumerate 16 iterations to a different value.  The easiest way to do this is to create a map.  I know this seems to be getting hairy but it really isn’t.  The map will be defined as an array with 16 elements.  The array will be filled with the search space based on which scheme is currently being tested.  Take a look at this code where I show how to define an array of 16 elements and introduce my Switch/Case construct.

array: optVals[16](0);

switch(switchMode)
begin
case 1:
startPoint = 10; // vol based
increment = 2;
case 2:
startPoint = 250/bigPointValue; // $ based
increment = 100/bigPointValue;
case 3:
startPoint = 0.25; //standard dev
increment = 0.25*minMove/priceScale;
default:
startPoint = 1;
increment = 1;
end;

vars: cnt(0),loopCnt(0);
once
begin
for cnt = 1 to 16
begin
optVals[cnt] = startPoint + (cnt-1) * increment;
end;
end
Set Up Complete Search Space for all Three Schemes

This code creates a 16 element array, optVals, and assigns 0 to each element.  SwitchMode goes from 1 to 3.

  • if switchMode is 1: ATR scheme [case: 1] the startPoint is set to 10 and increment is set to 2
  • if switchMode is 2: $ Amt scheme [case: 2] the startPoint is set to $250 and increment is set to $100
  • if switchMode is 3: Percentage of StdDev [case: 3] the startPoint is set to 0.25 and the increment is set to 0.25

Once these two values are set the following 15 values can be spawned by the these two.  A for loop is great for populating our search space.  Notice I wrap this code with ONCE – remember ONCE  is only executed at the very beginning of each iteration or run.

once
begin
   for cnt = 1 to 16
   begin
     optVals[cnt] = startPoint + (cnt-1) * increment;
   end;
end

Based on startPoint and increment the entire search space is filled out.  Now all you have to do is extract this information stored in the array based on the iteration number.

Switch(switchMode) 
Begin
Case 1:
ratchetAmt = avgTrueRange(optVals[optLoops]) * ratchetMult;
trailAmt = avgTrueRange(optVals[optLoops]) * trailMult;
Case 2:
ratchetAmt =optVals[optLoops] * ratchetMult;
trailAmt = optVals[optLoops] * trailMult;
Case 3:
ratchetAmt =stddev(c,20) * optVals[optLoops] * ratchetMult;
trailAmt = stddev(c,20) * optVals[optLoops] * trailMult;
Default:
ratchetAmt = avgTrueRange(optVals[optLoops]) * ratchetMult;
trailAmt = avgTrueRange(optVals[optLoops]) * trailMult;
end;


if c crosses over highest(c[1],20) then buy next bar at open;
if c crosses under lowest(c[1],20) then sellshort next bar at open;

mp = marketPosition;
if mp <> 0 and mp[1] <> mp then
begin
longMult = 0;
shortMult = 0;
end;


If mp = 1 then lep = entryPrice;
If mp =-1 then sep = entryPrice;


// Okay initially you want a X point stop and then pull the stop up
// or down once price exceeds a multiple of Y points
// longMult keeps track of the number of Y point multiples of profit
// always key off of lep(LONG ENTRY POINT)
// notice how I used + 1 to determine profit
// and - 1 to determine stop level

If mp = 1 then
Begin
If h >= lep + (longMult + 1) * ratchetAmt then longMult = longMult + 1;
Sell("LongTrail") next bar at (lep + (longMult - 1) * trailAmt) stop;
end;

If mp = -1 then
Begin
If l <= sep - (shortMult + 1) * ratchetAmt then shortMult = shortMult + 1;
buyToCover("ShortTrail") next bar (sep - (shortMult - 1) * trailAmt) stop;
end;
Extract Search Space Values and Rest of Code

Switch(switchMode)
Begin
Case 1:
  ratchetAmt = avgTrueRange(optVals[optLoops])ratchetMult;
  trailAmt = avgTrueRange(optVals[optLoops]) trailMult;
Case 2:
  ratchetAmt =optVals[optLoops] * ratchetMult;
  trailAmt = optVals[optLoops] * trailMult;
Case 3:
  ratchetAmt =stddev(c,20)optVals[optLoops]
ratchetMult;
  trailAmt = stddev(c,20) * optVals[optLoops] * trailMult;

Notice how the optVals are indexed by optLoops.  So the only variable that is optimized is the optLoops and it spans 1 through 16.  This is the power of enumerations – each number represents a different thing and this is how you can control which variables are optimized in terms of another optimized variable.   Here is my optimization specifications:

Opimization space

And here are the results:

Optimization Results

The best combination was scheme 1 [N-day ATR Calculation] using a 2 Mult Ratchet and 1 Mult Trail Trigger.  The best N-day was optVals[2] for this scheme.  What in the world is this value?  Well you will need to back engineer a little bit here.  The starting point for this scheme was 10 and the increment was 2 so if optVals[1] =10 then optVals[2] = 12 or ATR(12).    You can also print out a map of the search spaces.

vars: cnt(0),loopCnt(0);
once
begin
loopCnt = loopCnt + 1;
// print(switchMode," : ",d," ",startPoint);
// print(" ",loopCnt:2:0," --------------------");
for cnt = 1 to 16
begin
optVals[cnt] = startPoint + (cnt-1) * increment;
// print(cnt," ",optVals[cnt]," ",cnt-1);
end;
end;
  Scheme 1
--------------------
1.00 10.00 0.00 10 days
2.00 12.00 1.00
3.00 14.00 2.00
4.00 16.00 3.00
5.00 18.00 4.00
6.00 20.00 5.00
7.00 22.00 6.00
8.00 24.00 7.00
9.00 26.00 8.00
10.00 28.00 9.00
11.00 30.00 10.00
12.00 32.00 11.00
13.00 34.00 12.00
14.00 36.00 13.00
15.00 38.00 14.00
16.00 40.00 15.00

Scheme2
--------------------
1.00 5.00 0.00 $ 250
2.00 7.00 1.00 $ 350
3.00 9.00 2.00 $ 400
4.00 11.00 3.00 $ ---
5.00 13.00 4.00
6.00 15.00 5.00
7.00 17.00 6.00
8.00 19.00 7.00
9.00 21.00 8.00
10.00 23.00 9.00
11.00 25.00 10.00
12.00 27.00 11.00
13.00 29.00 12.00
14.00 31.00 13.00
15.00 33.00 14.00
16.00 35.00 15.00 $1750

Scheme 3
--------------------
1.00 0.25 0.00 25 % stdDev
2.00 0.50 1.00
3.00 0.75 2.00
4.00 1.00 3.00
5.00 1.25 4.00
6.00 1.50 5.00
7.00 1.75 6.00
8.00 2.00 7.00
9.00 2.25 8.00
10.00 2.50 9.00
11.00 2.75 10.00
12.00 3.00 11.00
13.00 3.25 12.00
14.00 3.50 13.00
15.00 3.75 14.00
16.00 4.00 15.00

This was a elaborate post so please email me with questions.  I wanted to demonstrate that we can accomplish very sophisticated things with just the pure and raw EasyLanguage which is a programming language itself.

A Simple Break Out Algorithm Demonstrating Time Optimization

What is Better:  30, 60, or 120 Minute Break-Out on ES.D

Here is a simple tutorial you can use as a foundation to build a potentially profitable day trading system.  Here we wait N minutes after the open and then buy the high of the day or short the low of the day and apply a protective stop and profit objective.  The time increment can be optimized to see what time frame is best to use.  You can also optimize the stop loss and profit objective – this system gets out at the end of the day.  This system can be applied to any .D data stream in TradeStation or Multicharts.

Logic Description

  1. get open time
  2. get close time
  3. get N time increment
    1. 15 – first 15 minute of day
    2. 30 – first 30 minute of day
    3. 60 – first hour of day
  4. get High and Low of day
  5. place stop orders at high and low of day – no entries late in day
  6. calculate buy and short entries – only allow one each*
  7. apply stop loss
  8. apply profit objective
  9. get out at end of day if not exits have occurred

Optimization Results [From 15 to 120 by 5 minutes] on @ES.D 5 Minute Chart – Over Last Two Years

Optimization of Time: Look How the # Trades Decrease as the Time Increment Increases

Simple Orbo EasyLanguage

I threw this together rather quickly in a response to a reader’s question.  Let me know if you see a bug or two.  Remember once you gather your stops you must allow the order to be issued on every subsequent bar of the trading day.  The trading day is defined to be the time between timeIncrement and endTradeMinB4Close.  Notice how I used the EL function calcTime to calculate time using either a +positive or -negative input.  I want to sample the high/low of the day at timeIncrement and want to trade up until endTradeMinB4Close time.  I use the HighD and LowD functions to extract the high and low of the day up to that point.  Since I am using a tight stop relative to today’s volatility you will see more than 1 buy or 1 short occurring.  This happens when entry/exit occurs on the same bar and MP is not updated accordingly.  Somewhere  hidden in this tome of a blog you will see a solution for this.  If you don’t want to search I will repost it tomorrow.


//Optimizing Time to determine a simple break out
//Only works on .D data streams
Inputs: timeIncrement(15),endTradeMinB4Close(-15),stopLoss$(500),profTarg$(1000);

vars: firstBarTime(0),lastBarTime(0),buyStop(0),shortStop(0),
calcStopTime(0),quitTradeTime(0),buysToday(0),shortsToday(0),mp(0);

firstBarTime = sessionStartTime(0,1);
lastBarTime = sessionEndTime(0,1);

calcStopTime = calcTime(firstBarTime,timeIncrement);
quitTradeTime = calcTime(lastBarTime,endTradeMinB4Close);



If time = calcStopTime then
begin
buyStop = HighD(0);
shortStop = LowD(0);
buysToday = 0;
shortsToday = 0;
End;

if time >= calcStopTime and time < quitTradeTime then
begin
if buysToday = 0 then Buy next bar at buyStop stop;
if shortsToday = 0 then Sell short next bar at shortStop stop;
end;

mp = marketPosition;

If mp = 1 then buysToday = 1;
If mp = -1 then shortsToday = 1;

SetStopLoss(stopLoss$);
setProfitTarget(profTarg$);
setExitOnClose;
Orbo EasyLanguage Code

 

 

 

Highly Illogical – Best Guess Doesn’t Match Reality

An ES Break-Out System with Unexpected Parameters

I was recently testing the idea of a short term VBO strategy on the ES utilizing very tight stops.  I wanted to see if using a tight ATR stop in concert with the entry day’s low (for buys) would cut down on losses after a break out.  In other words, if the break out doesn’t go as anticipated get out and wait for the next signal.  With the benefit of hindsight in writing this post, I certainly felt like my exit mechanism was what was going to make or break this system.  In turns out that all pre conceived notions should be thrown out when volatility enters the picture.

System Description

  • If 14 ADX < 20 get ready to trade
  • Buy 1 ATR above the midPoint of the past 4 closing prices
  • Place an initial stop at 1 ATR and a Profit Objective of 1 ATR
  • Trail the stop up to the prior day’s low if it is greater than entryPrice – 1 ATR initially, and then trail if a higher low is established
  • Wait 3 bars to Re-Enter after going flat – Reversals allowed

That’s it.  Basically wait for a trendless period and buy on the bulge and then get it out if it doesn’t materialize.  I knew I could improve the system by optimizing the parameters but I felt I was in the ball park.  My hypothesis was that the system would fail because of the tight stops.  I felt the ADX trigger was OK and the BO level would get in on a short burst.  Just from past experience I knew that using the prior day’s price extremes as a stop usually doesn’t fair that well.

Without commission the initial test was a loser: -$1K and -$20K draw down over the past ten years.  I thought I would test my hypothesis by optimizing a majority of the parameters:

  • ADX Len
  • ADX Trigger Value
  • ATR Len
  • ATR BO multiplier
  • ATR Multiplier for Trade Risk
  • ATR Multiplier for Profit Objective
  • Number of bars to trail the stop – used lowest lows for longs

Results

As you can probably figure, I  had to use the Genetic Optimizer to get the job done.  Over a billion different permutations.  In the end here is what the computer pushed out using the best set of parameters.

No Commission or Slippage – Genetic Optimized Parameter Selection

Optimization Report – The Best of the Best

Top Parameters – notice the Wide Stop Initially and the Trailing Stop Look-Back and also the Profit Multiplier – but what really sticks out is the ADX inputs

ADX – Does it Really Matter?

Take a look at the chart – the ADX is mostly in Trigger territory – does it really matter?

A Chart is Worth a 1000 Words

What does this chart tell us?

70% of Profit was made in last 40 trades

Was the parameter selection biased by the heightened level of volatility?  The system has performed on the parameter set very well over the past two or three years.  But should you use this parameter set going into the future – volatility will eventually settle down.

Now using my experience in trading I would have selected a different parameter set.   Here are my biased results going into the initial programming.  I would use a wider stop for sure, but I would have used the generic ADX values.

George’s More Common Sense Parameter Selection – wow big difference

I would have used 14 ADX Len with a 20 trigger and risk 1 to make 3 and use a wider trailing stop.  With trend neutral break out algorithms, it seems you have to be in the game all of the time.  The ADX was supposed to capture zones that predicated break out moves, but the ADX didn’t help out at all.  Wider stops helped but it was the ADX values that really changed the complexion of the system.  Also the number of bars to wait after going flat had a large impact as well.  During low volatility you can be somewhat picky with trades but when volatility increases you gots to be in the game. – no ADX filtering and no delay in re-Entry.  Surprise, surprise!

Alogorithm Code

Here is the code – some neat stuff here if you are just learning EL.  Notice how I anchor some of the indicator based variables by indexing them by barsSinceEntry.  Drop me a note if you see something wrong or want a little further explanation.

Inputs: adxLen(14),adxTrig(25),atrLen(10),atrBOMult(1),atrRiskMult(1),atrProfMult(2),midPtNumBar(3),posMovTrailNumBars(2),reEntryDelay(3);
vars: mp(0),trailLongStop(0),trailShortStop(0),BSE(999),entryBar(0),tradeRisk(0),tradeProf(0);
vars: BBO(0),SBO(0),ATR(0),totTrades(0);

mp = marketPosition;
totTrades = totalTrades;
BSE = barsSinceExit(1);
If totTrades <> totTrades[1] then BSE = 0;
If totalTrades = 0 then BSE = 99;


ATR = avgTrueRange(atrLen);

SBO = midPoint(c,midPtNumBar) - ATR * atrBOMult;
BBO = midPoint(c,midPtNumBar) + ATR * atrBOMult;

tradeRisk = ATR * atrRiskMult;
tradeProf = ATR * atrProfMult;

If mp <> 1 and adx(adxLen) < adxTrig and BSE > reEntryDelay and open of next bar < BBO then buy next bar at BBO stop;
If mp <>-1 and adx(adxLen) < adxTrig AND BSE > reEntryDelay AND open of next bar > SBO then sellshort next bar at SBO stop;

If mp = 1 and mp[1] <> 1 then
Begin
trailLongStop = entryPrice - tradeRisk;
end;

If mp = -1 and mp[1] <> -1 then
Begin
trailShortStop = entryPrice + tradeRisk;
end;

if mp = 1 then sell("L-init-loss") next bar at entryPrice - tradeRisk[barsSinceEntry] stop;
if mp = -1 then buyToCover("S-init-loss") next bar at entryPrice + tradeRisk[barsSinceEntry] stop;


if mp = 1 then
begin
sell("L-ATR-prof") next bar at entryPrice + tradeProf[barsSinceEntry] limit;
trailLongStop = maxList(trailLongStop,lowest(l,posMovTrailNumBars));
sell("L-TL-Stop") next bar at trailLongStop stop;
end;
if mp =-1 then
begin
buyToCover("S-ATR-prof") next bar at entryPrice -tradeProf[barsSinceEntry] limit;
trailShortStop = minList(trailShortStop,highest(h,posMovTrailNumBars));
// print(d, " Short and trailStop is : ",trailShortStop);
buyToCover("S-TL-Stop") next bar at trailShortStop stop;
end;

Converting A String Date To A Number – String Manipulation in EasyLanguage

EasyLanguage Includes a Powerful String Manipulation Library

I thought I would share this function.  I needed to convert a date string (not a number per se) like “20010115” or “2001/01/15” or “01/15/2001” or “2001-01-15” into a date that TradeStation would understand.  The function had to be flexible enough to accept the four different formats listed above.

String Functions

Most programming languages have functions that operate strictly on strings and so does EasyLanguage.  The most popular are:

  • Right String (rightStr) – returns N characters from the right side of the string.
  • Left String (leftStr) – returns N character starting from the left side of the string
  • Mid String (midStr) – returns the middle portion of a string starting at a specific place in the string and advance N characters
  • String Length (strLen) – returns the number of characters in the string
  • String To Number (strToNum) – converts the string to a numeric representation.  If the string has a character, this function will return 0
  • In String (inStr) – returns location of a sub string inside a larger string ( a substring can be just one character long)

Unpack the String

If the format is YYYYMMDD format then all you need to do is remove the dashes or slashes (if there are any) and then convert what is left over to a number.   But if the format is MM/DD/YYYY format then we are talking about a different animal.  So how can you determine if the date string is in this format?  First off you need to find out if the month/day/year separator is a slash or a dash.  This is how you do this:

whereIsAslash = inStr(dateString,”/”);
whereIsAdash = inStr(dateString,”-“);

If either is a non zero then you know there is a separator.  The next thing to do is locate the first “dash or slash” (the search character or string).  If it is located within the first four characters of the date string then you know its not a four digit year.  But, lets pretend the format is “12/14/2001” so if the first dash/slash is the 3rd character you can extract the month string by doing this:

firstSrchStrLoc = inStr(dateString,srchStr);
mnStr= leftStr(dateString,firstSrchStrLoc-1);

So if firstSrchStrLoc = 3 then we want to leftStr the date string and extract the first two characters and store them in mnStr.  We then store what’s left of the date string in tempStr by using rightStr:

strLength = strLen(dateString);

tempStr = rightStr(dateString,strLength-firstSrchStrLoc);

Here I pass dateString and the strLength-firstSrchStrLoc – so if the dateString is 10 characters long and the firstSrchStrLoc is 3, then we can create a tempstring by taking [10 -3  = 7 ] characters from right side of the string:

“12/14/2001” becomes “14/2001” – once that is done we can pull the first two characters from the tempStr and store those into the dyStr [day string.]  I do this by searching for the “/” and storing its location in srchStrLoc.  Once I have that location I can use that information and leftStr to get the value I need.   All that is left now is to use the srchStrLoc and the rightStr function.

srchStrLoc = inStr(tempStr,srchStr);
dyStr = leftStr(tempStr,srchStrLoc-1);
yrStr = rightStr(tempStr,strLen(tempStr)-srchStrLoc);

Now convert the strings to numbers and multiply their values accordingly.

DateSTrToYYYMMDD = strToNum(yrStr) X 10000-19000000 + strToNum(mnStr) X 100 + strToNum(dyStr)

To get the date into TS format I have to subtract 19000000 from the year.  Remember TS represents the date in YYYMMDD  format.

Now what do  you do if the date is in the right format but simply includes the dash or slash separators.  All you need to do here is loop through the string and copy all non dash or slash characters to a new string and then convert to a number.  Here is the loop:

        tempStr = "";
iCnt = 1;
While iCnt <= strLength
Begin
If midStr(dateString,iCnt,1) <> srchStr then
tempStr += midStr(dateString,iCnt,1);
iCnt+=1;
end;
tempDate = strToNum(tempStr);
DateStrToYYYMMDD = tempDate-19000000;

Here I use midStr to step through each character in the string.  MidStr requires a string and the starting point and how many characters you want returned from the string.  Notice I step through the string with iCnt and only ask for 1 character at a time.  If the character is not a dash or slash I concatenate tempStr with the non dash/slash character.  At the end of the While loop I simply strToNum the string and subtract 19000000.  That’s it!  Remember EasyLanguage is basically a full blown programming language with a unique set of functions that relate directly to trading.

Here is the function and testFunc caller.

STRINGFUNCANDFUNCCALLER

 

Implementing Finite State Machine Functionality with EasyLanguage (Last Trade Was Loser Filter a la Turtle)

Last Trade Was a Loser Filter – To Use or Not To Use

Premise

A major component of the Turtle algorithm was to skip the subsequent 20-day break out if the prior was a winner.  I guess Dennis believed the success/failure of a trade had an impact on the outcome of the subsequent trade.  I have written on how you can implement this in EasyLanguage in prior posts, but I have been getting some questions on implementing FSM in trading and thought this post could kill two birds with one stone: 1) provide a template that can be adapted to any LTL mechanism and 2) provide the code/structure of setting up a FSM using EasyLanguage’s Switch/Case structure.

Turtle Specific LTL Logic

The Turtle LTL logic states that a trade is a loser if a 2N loss occurs after entry.  N is basically an exponential-like moving average of TrueRange.  So if the market moves 2N against a long or short position and stops you out, you have a losing trade.  What makes the Turtle algorithm a little more difficult is that you can also exit on a new 10-day low/high depending on your position.  The 10-day trailing exit does not signify a loss.  Well at least in this post it doesn’t.  I have code that says any loss is a loss, but for this explanation let’s just stick to a 2N loss to determine a trade’s failure.

How To Monitor Trades When Skipping Some Of Them

This is another added layer of complexity.  You have to do your own trade accounting behind the scenes to determine if a losing trade occurs.  Because if you have a winning trade you skip the next trade and if you skip it how do you know if it would have been a winner or a loser.  You have to run a theoretical system in parallel with the actual system code.

Okay let’s start out assuming the last trade was a winner.  So we turn real trading off.  As the bars go by we look for a 20-Day high or low penetration.  Assume a new 20-Day high is put in and a long position is established at the prior 20-Day high.  At this point you calculate a 2N amount and subtract if from the theoretical entry price to obtain the theoretical exit price.  So you have a theoMP (marketPosition) and a theoEX (exit price.)  This task seems pretty simple, so you mov on and start looking for a day that either puts in a new 10-Day low or crosses below your theoEX price.  If a new 10-Day low is put in then you continue on looking for a new entry and a subsequent 2N loss.  If a 2N loss occurs, then you turn trading back on and continue monitoring the trades – turning trading off and then back on when necessary.  In the following code I use these variables:

  • state – 0: looking for an entry or 1: looking for an exit
  • lep – long entry price
  • sep– short entry price
  • seekLong – I am seeking a long position
  • seekShort – I am seeking a short position
  • theoMP – theoretical market position
  • theoEX – theoretical exit price
  • lxp – long exit price
  • sxp – short exit price

Let’s jump into the Switch/Case structure when state = 0:

	Switch(state)
Begin
Case 0:
lep = highest(h[1],20) + minMove/priceScale;
sep = lowest(l[1],20) - minMove/priceScale;
If seekLong and h >= lep then
begin
theoMP = 1;
theoEX = maxList(lep,o) - 2 * atr;
// print(d," entered long >> exit at ",theoEX," ",atr);
end;
If seekShort and l <= sep then
begin
theoMP = -1;
theoEX = minList(sep,o) + 2 * atr;
end;
If theoMP <> 0 then
begin
state = 1;
cantExitToday = True;
end;
State 0 (Finite State Set Up)

The Switch/Case is a must have structure in any programming language.  What really blows my mind is that Python doesn’t have it.  They claim its redundant to an if-then structure and it is but its so much easier to read and implement.  Basically you use the Switch statement and a variable name and based on the value of the variable it will flow to whatever case the variable equates to.  Here we are looking at state 0.  In the CASE: 0  structure the computer calculates the lep and sep values – long and short entry levels.  If you are flat then you are seeking a long or a short position.  If the high or low of the bar penetrates it respective trigger levels then theoMP is set to 1 for long or -1 for short.  TheoEX is then calculated based on the atr value on the day of entry.  If theoMP is set to either a 1 or -1, then we know a trade has just been triggered.  The Finite State Machine then switches gears to State 1.  Since State = 1 the next Case statement is immediately evaluated.  I don’t want to exit on the same bar as I entered (wide bars can enter and exit during volatile times) I use a variable cantExitToday.  This variable delays the Case 1: evaluation by one bar.

State = 1 code:

		Case 1:
If not(cantExitToday) then
begin
lxp = maxList(theoEX,lowest(l[1],10)-minMove/priceScale);
sxp = minList(theoEX,highest(h[1],10)+minMove/priceScale);
If theoMP = 1 and l <= lxp then
begin
theoMP = 0;
seekLong = False;
if lxp <= theoEX then
ltl = True
Else
ltl = False;
end;
If theoMP =-1 and h >= sxp then
begin
theoMP = 0;
seekShort = False;
if sxp >= theoEX then
ltl = True
else
ltl = False;
end;
If theoMP = 0 then state = 0;
end;
cantExitToday = False;
end;
State = 1 (Switching Gears)

Once we have a theoretical position, then we only examine the code in the Case 1: module.  On the subsequent bar after entry, the lxp and sxp (long exit and short exit prices) are calculated.  Notice these values use maxList or minList to determine whichever is closer to the current market action – the 2N stop or the lowest/highest low/high for the past 10-daysLxp and sxp are assigned whichever is closer.  Each bar’s high or low is compared to these values.  If theoMP = 1 then the low is compared to lxp.  If the low crosses below lxp, then things are set into motion.  The theoMP is immediately set to  0 and seekLong is turned to False.  If lxp <= a 2N loss then ltl (last trade loser) is set to true.  If not, then ltl is set to False.   If theoMP = 0 then we assume a flat position and switch the FSM back to State 0 and start looking for a new trade.  The ltl variable is then used in the code to allow a real trade to occur.

Strategy Incorporates Our FSM Output

vars:N(0),mp(0),NLossAmt(0);
If barNumber = 1 then n = avgTrueRange(20);
if barNumber > 1 then n = (n*19 + trueRange)/20;

If useLTLFilter then
Begin
if ltl then buy next bar at highest(h,20) + minMove/priceScale stop;
if ltl then sellShort next bar at lowest(l,20) -minMove/priceScale stop;
end
Else
Begin
buy next bar at highest(h,20) + minMove/priceScale stop;
sellShort next bar at lowest(l,20) -minMove/priceScale stop;
end;

mp = marketPosition;

If mp <> 0 and mp[1] <> mp then NLossAmt = 2 * n;

If mp = 1 then
Begin
Sell("LL10-LX") next bar at lowest(l,10) - minMove/priceScale stop;
Sell("2NLS-LX") next bar at entryPrice - NLossAmt stop;
end;
If mp =-1 then
Begin
buyToCover("HH10-SX") next bar at highest(h,10) + minMove/priceScale stop;
buyToCover("2NLS-SX") next bar at entryPrice + NLossAmt stop;
end;
Strategy Code Using ltl filter

This code basically replicates what we did in the FSM, but places real orders based on the fact that the Last Trade Was A Loser (ltl.)

Does It Work – Only Trade After a 2N-Loss

Last Trade Loser In Action

Without Filter on the last 10-years in Crude Oil

With Filter on the last 10-years in Crude Oil

I have programmed this into my TradingSimula-18 software and will show a portfolio performance with this filter a little later at www.trendfollowingsystems.com.

I had to do some fancy footwork with some of the code due to the fact you can exit and then re-enter on the same bar.  In the next post on this blog I will so you those machinations .  With this template you should be able to recreate any last trade was a loser mechanism and see if it can help out with your own trading algorithms.  Shoot me an email with any questions.

 

 

 

Ratio Adjusted versus Pointed Adjusted Contracts in TradeStation – Part 1

If you play around with TradeStation’s custom futures capabilities you will discover you can create different adjusted continuous contracts.  Take a look at this picture:

Panama vs Ratio Adjusted

Both charts look the same and the trades enter and exit at the same locations in relation to the respective price charts.   However, take a look at the Price Scale on the right and the following pictures.

As you can see from the P/L from each trade list there is a big difference.  The top list is using RAD and the second is the generally accepted Panama Adjusted Data (PAD.)  Ratio adjusted data takes the percentage difference between the expiring contract and the new contract and propagates the value throughout the entire back history.  This is different than the PAD we have all used, where the actual point difference is propagated.  These two forms of adjustment have their own pros and cons but many industry leaders prefer the RAD.  I will go over a little bit of the theory in my next post, but in the mean time I will direct you to Thomas Stridsman’s excellent work on the subject in his book, “Trading Systems That Work – Building and Evaluating Effective Trading Systems”.

Here is another look at draw down metrics between the two formats.

RAD V PAD DrawDown

Who would want to trade a system on 1 contract of crude and have a $174K draw down?  Well you can’t look at it like that.  Back in 2008 crude was trading at $100 X 1000 = $100,000 a contract.  Today May 11th 2020 it is around $25,000.  So a drawdown of $44K back then would be more like $176K in today’s terms.  In my next post I will go over the theory of  RAD, but for right now you just need to basically ignore TradeStation’s built in performance metrics and use this function that I developed in most part by looking at Thomas’ book.

//Name this function StridsmanFunc1

Vars: FName(""), offset(1),TotTr(0), Prof(0), CumProf(1), ETop(1), TopBar(0), Toplnt(0),BotBar(0), Botlnt(0), EBot(1), EDraw(1), TradeStr2( "" );
Arrays: tradesPerArr[1000](0),drawDownArr[1000](0);
Vars: myEntryPrice(0),myEntryDate(0),myMarketPosition(0),myExitDate(0),myExitPrice(0);
If CurrentBar = 1 Then
Begin
FName = "C:\Temp\" + LeftStr(GetSymbolName, 3) + ".csv";
FileDelete(FName);
TradeStr2 = "E Date" + "," + "Position" + "," + "E Price" + "," + "X Date" +"," + "X Price" + "," + "Profit" + "," + "Cum. prof." + "," + "E-Top" + "," +"E-Bottom" + "," + "Flat time" + "," + "Run up" + "," + "Drawdown" +NewLine;
FileAppend(FName, TradeStr2);
End;
TotTr = TotalTrades;
If TotTr > TotTr[1] or (lastBarOnChart and marketPosition <> 0) Then
Begin

if TotTr > TotTr[1] then
begin
if (EntryPrice(1) <> 0) then Prof = 1 + PositionProfit(1)/(EntryPrice(1) * BigPointValue);
End
else
begin
Value99 = iff(marketPosition = 1,c - entryPrice, entryPrice - c);
Prof = 1 + (Value99*bigPointValue) /(Entryprice *BigPointValue);
// print(d," StridsmanFunc1 ",Value99," ",Prof," ",(Value99*bigPointValue) /(Entryprice *BigPointValue):5:4);
TotTr = totTr + 1;
end;
tradesPerArr[TotTr] = Prof - 1;
CumProf = CumProf * Prof;
ETop = MaxList(ETop, CumProf);
If ETop > ETop[1] Then
Begin
TopBar = CurrentBar;
EBot = ETop;
End;

EBot = MinList(EBot, CumProf);

If EBot<EBot[1] Then BotBar = CurrentBar;

Toplnt = CurrentBar - TopBar;

Botlnt = CurrentBar - BotBar;

if ETop <> 0 then EDraw = CumProf / ETop;

drawDownArr[TotTr] = (EDraw - 1);

myEntryDate = EntryDate(1);
myMarketPosition = MarketPosition(1);
myEntryPrice = EntryPrice(1);
myExitDate = ExitDate(1);
myExitPrice = ExitPrice(1);
If lastBarOnChart and marketPosition <> 0 then
Begin
myEntryDate = EntryDate(0);
myMarketPosition = MarketPosition(0);
myEntryPrice = EntryPrice(0);
myExitDate = d;
myExitPrice =c;
end;
TradeStr2 = NumToStr(myEntryDate, 0) + "," +NumToStr(myMarketPosition, 0) + "," + NumToStr(myEntryPrice, 2) + ","
+ NumToStr(myExitDate, 0) + "," + NumToStr(myExitPrice, 2) + ","+ NumToStr((Prof - 1) * 100, 2) + "," + NumToStr((CumProf - 1) *100, 2) + ","
+ NumToStr((ETop - 1) * 100, 2) + "," + NumToStr((EBot - 1) * 100, 2) + "," + NumToStr(Toplnt, 0) + "," + NumToStr(Botlnt, 0) + "," + NumToStr((EDraw - 1) * 100, 2) +
NewLine;

FileAppend(FName, TradeStr2);
End;
vars: tradeStr3(""),
ii(0),avgTrade(0),avgTrade$(0),cumProf$(0),trdSum(0),
stdDevTrade(0),stdDevTrade$(0),
profFactor(0),winTrades(0),lossTrades(0),perWins(0),perLosers(0),
largestWin(0),largestWin$(0),largestLoss(0),largestLoss$(0),avgProf(0),avgProf$(0),
winSum(0),lossSum(0),avgWin(0),avgWin$(0),avgLoss(0),avgLoss$(0),maxDD(0),maxDD$(0),cumProfit(0),cumProfit$(0);

If lastBarOnChart then
begin
stdDevTrade = standardDevArray(tradesPerArr,TotTr,1);
stdDevTrade$ = stdDevTrade*c*bigPointValue;
For ii = 1 to TotTr
Begin
trdSum = trdSum + tradesPerArr[ii];
// print(d," ",ii," ",tradesPerArr[ii]);
If tradesPerArr[ii] > 0 then
begin
winTrades = winTrades + 1;
winSum = winSum + tradesPerArr[ii];
end;
If tradesPerArr[ii] <=0 then
begin
lossTrades = lossTrades + 1;
lossSum = lossSum + tradesPerArr[ii];
end;
If tradesPerArr[ii] > largestWin then
begin
largestWin = tradesPerArr[ii];
// print("LargestWin Found ",largestWin);
end;
If tradesPerArr[ii] < largestLoss then largestLoss = tradesPerArr[ii];
If drawDownArr[ii] < maxDD then maxDD = drawDownArr[ii];
end;
// print("TradeSum: ",trdSum);
if TotTr <> 0 then avgTrade = trdSum/TotTr;
avgTrade$ = avgTrade*c*bigPointValue;
largestWin = largestWin;
largestLoss = largestLoss;
largestWin$ = largestWin*c*bigPointValue;
largestLoss$ = largestLoss*c*bigPointValue;
if TotTr <> 0 then perWins = winTrades/TotTr;
if TotTr <> 0 then perLosers = lossTrades/TotTr;
If winTrades <> 0 then avgWin = winSum / winTrades;
avgWin$ = avgWin*c*bigPointValue;
if lossTrades <> 0 then avgLoss= lossSum / lossTrades;
avgLoss$ = avgLoss*c*bigPointValue;
maxDD$ = maxDD *c*bigPointValue;
if lossTrades <>0 and avgLoss$ <> 0 then profFactor = (winTrades*avgWin$)/(lossTrades*avgLoss$);
CumProf = cumProf - 1;
CumProf$ = cumProf*c*bigPointValue;

TradeStr3 = "Total Trades,,"+NumToStr(TotTr,0)+",Num. Winners,"+NumToStr(winTrades,0)+","+NumToStr(perWins,3)+", Num. Losses,"+NumToStr(lossTrades,0)+","+NumToStr(perLosers,3)+NewLine+
"Profit Factor,,"+NumToStr(profFactor,3)+",Largest Win ,"+NumToStr(largestWin,3)+","+NumToStr(largestWin$,0)+",Largest Loss,"+NumToStr(largestLoss,3)+","+NumToStr(largestLoss$,0)+NewLine+
"Avg Profit,"+NumToStr(avgTrade,3)+","+NumToSTr(avgTrade$,0)+",Avg Win,"+NumToStr(avgWin,3)+","+NumToStr(avgWin$,0)+",Avg Loss,"+NumToStr(avgLoss,3)+","+NumToStr(avgLoss$,0)+NewLine+
"Std. Dev,"+NumToStr(stdDevTrade,3)+","+NumToStr(stdDevTrade$,0)+",Cum Profit,"+NumToStr(cumProf,3)+","+NumToStr(cumProf$,3)+",Draw Down,"+numToStr(maxDD,3)+","+numToStr(maxDD$,0)+NewLine;
FileAppend(FName, TradeStr3);
{ Print("Total Trades ",totalTrades," Num. Winners ",winTrades," ",perWins," Num. Losses ",lossTrades," ",perLosers);
Print("Profit Factor ",profFactor," Largest Win ",largestWin:5:2," ",largestWin$," Largest Loss ",largestLoss:5:2," ",largestLoss$);
Print("Avg Profit ",avgTrade," ",avgTrade$," Avg Win ",avgWin," ",avgWin$," Avg Loss ",avgLoss," ",avgLoss$);
Print("St Dev ",stdDevTrade," ",stdDevTrade$," Cum Profit ",cumProf," ",cumProf$," Drawdown ",maxDD," ",maxDD$);}


end;



StridsmanFunc1 = 1;
Conversion of Performance Metrics to Percentages Instead of $Dollars

This function will out put a file that looks like this.  Go ahead and play with the code – all you have to do is call the function from within an existing strategy that you are working with.  In part two I will go over the code and explain what its doing and how arrays and strings were used to archive the trade history and print out this nifty table.

Stridsman Function Output.

In this output if you treat the return from each trade as a function of the entry price and accumulate the returns you can convert the value to today’s current market price of the underlying.  In this case a 15 -year test going through the end of last year, ended up making almost $70K.

RAD TradeStation Metrics:

Profit $350K – Draw Down $140K

PAD TradeStation Metrics:

Profit $89K – Draw Down $45K

Stridsman Func on RAD:

Profit $70K – Draw Down $48K

At this point you can definitely determine that the typical RAD/TS metrics are not all that usuable.  The PAD/TS results look very similar to RAD/StridsmanFunc results.  Stay tuned for my next post and I will hopefully explain why RAD/StridsmanFunc is probably the most accurate performance metrics of the three.

Super Combo Day Tradng System A 2020 Redo!

If you have some time on your hands and you want to build your own Frankenstein monster from a parts bin, here is your chance.  The Super Combo Day Trading System was originally published in my “Building Winning Trading Systems” book back in 2001.  I designed it to be more of a tutorial than a pure trading system.    You should be able to get the spare parts you need to create your own day trading system.  Back in 2001, I wanted to show how to control and monitor different entry and exit techniques in one complete algorithm.  The system was designed to day-trade the big SP and the results at the time looked promising.  Since the transition to the ES and the higher levels of volatility that we have seen over the years and the adoption of overnight trading,  the system hasn’t fared that well, but the concepts are still viable as an instructional tool today as they were 20 years ago.  EasyLanguage has been improved over this time period so the coding for the Super Combo can definitely take advantage of the new enhancements.

Here are the main premises of the logic:

  • take advantage of a buyEasier and shortEasier pattern setup
  • incorporate daily and 5-minute time frames in one chart
  • include a breakOut, failedBreakOut and reverseOnLiquidation trade entry techniques
  • monitor which signal is currently online and apply the correct exit signal
  • monitor profit and incorporate a break even stop
  • monitor time and incorporate a trailing stop
  • provide an interface into the logic via inputs

Okay here we go – there is quite a bit of code here so let’s divide an conquer by examining just one module at a time.  This first module includes the inputs and variables section plus once per day calculations.

[LegacyColorValue = true]; 

{Super Combo by George Pruitt - redo 2020
This intra-day trading system will illustrate the multiple data
handling capabilities of TradeStation. All pertinent buy and sell
calculations will be based on daily bars and actual trades will be
executed on 5-min bars. I have made most of the parameters input
variables}

Inputs:waitPeriodMins(30),initTradesEndTime(1430),liqRevEndTime(1200),
thrustPrcnt1(0.30),thrustPrcnt2(0.60),breakOutPrcnt(0.25),
failedBreakOutPrcnt(0.25),protStopPrcnt1(0.30),protStopPrcnt2(0.20),
protStopAmt(3.00),breakEvenPrcnt(0.50),avgRngLength(10);

Variables:averageRange(0),canTrade(0),buyEasierDay(FALSE),
sellEasierDay(FALSE),buyBOPoint(0),sellBOPoint(0),longBreakPt(0),
shortBreakPt(0),longFBOPoint(0),shortFBOPoint(0),barCount(0),buysToday(0),
sellsToday(0),mp(0),longLiqPoint(0),shortLiqPoint(0),
longLiqPoint1(0),shortLiqPoint1(0),intraTradeHigh(0),intraTradeLow(999999);


{Just like we did in the psuedo code -- let's start out with the daily
bar calculations. If Date <> Date[1] -- first bar of day}
if(Date <> Date[1]) then {save time by doing these calculations once per day}
begin
averageRange = Average(Range,10) of Data2; {Data 2 points to daily bars}

canTrade = 0;
if range of data2 < averageRange then canTrade = 1;

{use close of data2 - seems to be more accurate than CloseD(1)
buyEasierDay =Close of Data2 >= Close[1] of Data2;
sellEasierDay = Close of Data2 < Close[1] of Data2;

buyBOPoint = Open + thrustPrcnt1*averageRange;
sellBOPoint= Open - thrustPrcnt2*averageRange;

if(sellEasierDay) then
begin
sellBOPoint= Open - thrustPrcnt1*averageRange;
buyBOPoint = Open + thrustPrcnt2*averageRange;
end;

longBreakPt = HighD(1) + breakOutPrcnt*averageRange;
shortBreakPt= LowD(1) - breakOutPrcnt*averageRange;

shortFBOPoint = HighD(1) - failedBreakOutPrcnt*averageRange;
longFBOPoint= LowD(1) + failedBreakOutPrcnt*averageRange;

{Go ahead and initialize any variables that we may need later on in the day}

barCount = 0;
buysToday = 0;sellsToday = 0;{You can put multiple statements on one line}
end;
First Modules of SuperCombo 2020

Here I am just setting up the inputs and variables that I will need to execute the algorithm.  If you are using .D data then the code

if date <> date[1] then

is a valid test for the first bar of the day.  A new date will represent the beginning of the next day.  The code controlled by this if-then construct is only executed one time per day.  So if you can put the lion’s share of daily calculations here, then it should speed stuff up.  The first thing I do is calculate the average range of the last 10 daily bars.  I access this date from data2.  Can you build a loop and accumulate the difference between the HighD and LowD function calls?

  1. for i = 1 to 10 begin
  2.      sum = sum + (HighD(i) – LowD(i));
  3. end;

The HighD() and LowD() functions are EasyLanguage enhancements that can help eliminate the need for a multi-data chart.  However, if you do this, you will get an warning message that its not a good idea.  I have done this and it seems to work, but to be safe just use Data2.    Next I determine if there has been a narrow range or range compression by comparing yesterday’s range to the averageRange.  If so, then I allow trading.  This is an old filter that looks for range expansion after compression.  The concept of a buyDay and sellDay was originated in the 1930s by George W. Cole (correct me if I am wrong here).  I use this idea by comparing the prior two bars closing relationships.  If there has been an up close, then I consider the next day to be a buyEasier day.  If the opposite is true, then its a sellEasier day.   This system isn’t unidirectional and does allow buying  and shorting in the same session – hence the word easier.   Continuing I calculate the levels that if the market reaches will hopefully trigger a short term trend in that direction.  This is the once highly respected open range break out or ORBO.  This methodology has lost its luster over the last 10 years or so due to overnight trading and allowing pent up buying and selling to be expressed in the overnight sessions.  Twenty years ago it was still viable.  The next bit of code creates the break out levels based on the buyEasier or sellEasier days.   The thrust is calculated by multiplying the range by thrustPrcnt1 and thrustPrcnt2.

So that is method 1 – break out.  Hope the market breaks out and continues to the close.  I wish it were this easy.  Since its not, the second methodolgy, FailedBreakOut, is calculated.  This is also known as the “ClearOut” trade.   The market is pushed to take out all the buy stops and then pulled back for the professionals to feast on the amateurs.  SuperCombo tries to take advantage of this by calculating the two points to determine a failed break out.  On the long side, it is the two points the market rises up to and then falls back to.  If the market breaches the longBreakPt, then look to sellShort at the shortFBOPoint.    Here is the next module

{Now lets trade and manage on 5-min bars}

barCount = barCount + 1; {count the number of bars of intraday data}
if(barCount >= waitPeriodMins/BarInterval and canTrade = 1) then {have we waited long enough}
begin
if(MarketPosition = 1) then buysToday = 1;
if(MarketPosition =-1) then sellsToday= 1;

if(buysToday = 0 and Time < initTradesEndTime) then
Buy("LBreakOut") next bar at buyBOPoint stop;

if(sellsToday= 0 and Time < initTradesEndTime) then
SellShort("SBreakout") next bar at sellBOPoint stop;

if(highD(0) > longBreakPt and sellsToday = 0 and Time < initTradesEndTime) then
SellShort("SfailedBO") next bar at shortFBOPoint stop;
if(lowD(0) < shortBreakPt and buysToday = 0 and Time < initTradesEndTime) then
Buy("BfailedBO") next bar at longFBOPoint stop;
Monitor Market Action and Place Trades Accordingly

 

if(barCount>= waitPeriodMins/BarInterval and canTrade = 1) then

Forces the logic to flow only if canTrade is 1 and we have waited for amateur hour to be completed – well 30 minutes to be accurate.  Is the first hour really amateur hour?  I don’t think this applies, but if you think it does this is how you control trading prior to the completion of this period.  By dividing by BarInterval and counting each bar you can generalize this code for any time resolution.   If MarketPosition is 1 then you know you entered a long position and the opposite is true for short positions.  Only place the break out orders if time is less than initTradesEndTime.  If the market penetrates the long and shortBreakPts, then prepare to take advantage of a failed breakout.  Only go short if a short position has not already been entered – same for longs.  So, this logic places the breakOut and failedBreakOut orders.  Now for the last module.

{The next module keeps track of positions and places protective stops}

mp = marketPosition;
if(MarketPosition = 1) then
begin
longLiqPoint = EntryPrice-protStopPrcnt1*averageRange;
longLiqPoint = MinList(longLiqPoint,EntryPrice - protStopAmt);
longLiqPoint1 = EntryPrice - protStopPrcnt2*averageRange;
longLiqPoint1 = MinList(longLiqPoint1,EntryPrice - protStopAmt);
if Maxpositionprofit >= breakEvenPrcnt*averageRange*bigPointValue then
begin
longLiqPoint = EntryPrice; {Breakeven trade}
longLiqPoint1 = EntryPrice; {Breakeven trade}
end;
if(Time >= initTradesEndTime) then
begin
longLiqPoint = MaxList(longLiqPoint,Lowest(Low,3)); {Trailing stop}
longLiqPoint1 = MaxList(longLiqPoint1,Lowest(Low,3)); {Trailing stop}
end;
if(Time < liqRevEndTime and sellsToday = 0 and
longLiqPoint <> EntryPrice and BarsSinceEntry >= 4) then
SellShort("LongLiqRev") next bar at longLiqPoint stop;

Sell("LongLiq-BO") from entry("LBreakOut") next bar at longLiqPoint stop;
Sell("LongLiq-FBO") from entry("BFailedBO") next bar at longLiqPoint stop;
Sell("LongLiq-RLoss") from entry("ShortLiqRev") next bar at longLiqPoint1 stop;
end;
if(MarketPosition =-1) then
begin
shortLiqPoint = EntryPrice+protStopPrcnt1*averageRange;
shortLiqPoint = MaxList(shortLiqPoint,EntryPrice + protStopAmt);
shortLiqPoint1 = EntryPrice + protStopPrcnt2*averageRange;
shortLiqPoint1 = MaxList(shortLiqPoint1,EntryPrice + protStopAmt);
if maxPositionProfit >= breakEvenPrcnt*averageRange*bigPointValue then
begin
shortLiqPoint = EntryPrice; {Breakeven trade}
shortLiqPoint1 = EntryPrice;
end;
if(Time >= initTradesEndTime) then
begin
shortLiqPoint = MinList(shortLiqPoint,Highest(High,3)); {Trailing stop}
shortLiqPoint1 = MinList(shortLiqPoint1,Highest(High,3)); {Trailing stop}
end;
if(Time < liqRevEndTime and buysToday = 0 and
shortLiqPoint <> EntryPrice and BarsSinceEntry >= 4) then
Buy("ShortLiqRev") next bar at shortLiqPoint stop;

BuyToCover("ShortLiq-BO") from entry("SBreakOut") next bar at shortLiqPoint stop;
BuyToCover("ShortLiq-FBO") from entry("SFailedBO") next bar at shortLiqPoint stop;
BuyToCover("ShortLiq-RLoss") from entry("LongLiqRev") next bar at shortLiqPoint1 stop;
end;
end;
SetExitOnClose;
TradeManagement (Enter on Stop Loss or Not?)

This code looks a little hairy, but its not.  Let’s just look at the long side logic to save time here.  First let’s calculate the LongLiqPoints (1 and 2.)  Twenty years ago I thought it would be better to have a smaller stop for entries that occurred on a LiquidationReversal.  Oh yeah that code is in here to.  Back in the day I wanted to make sure the stop was at least 3 handles – ha, ha, ha – no really I am serious.  Really.  Stop laughing!! That code could be eliminated.  After calculating these two points I start to monitor profit and if it reaches a predetermined level I pull the the longLiqPoints toa  BreakEven stop.  If you are fortunate to still be in a trade after initTradesEndTime, then I start trailing the stop by the lowest low of the last 3 five minute bars – I don’t want to turn a small winner into a loser.  Now this is the fun stuff.

  1. if(Time < liqRevEndTime and sellsToday = 0 and
    longLiqPoint <> EntryPrice and BarsSinceEntry >= 4) then
  2.      SellShort(“LongLiqRev”) next bar at longLiqPoint stop;

If time is less than liqRevEndTime and BarsSinceEntry, then reverse and go short at the longLiqPoint stop.  Do this instead of liquidating.  I thought if the market reversed course quickly, then I wanted to take advantage of this counter trend move.  Eliminating this to see if it has any impact would be where I would start to play around with the template.  Okay now the liquidations based on from Entry take place next.  If I am long from a “ShortLiqRev“, then I use longLiqPoint1 instead of longLiqPoint.  Okay that last part was the kitchen sink.  Now you have enough code to make your own day trading system – really too much code, but you should be able to hobble something together from these parts.  Let me know if you can create your own Frankenstein monster.  I will update the parameters to see if there is any hope to the system as a whole.  Keep checking back for updated performance metrics.  Best to all and be safe!