Before the days of OOEL and more advanced data structures, such as vectors, you had to work with multidimensional arrays.
The problem with arrays is you have to do all the housekeeping whereas with vectors the housekeeping is handled internally. Yes, vectors in many cases would be the most efficient approach, but if you are already using Multi-D arrays, then mixing the two could become confusing. So stick with the arrays for now and progress into vectors at your leisure.
Recreate the CCI indicator with Multi-D Array
This exercise is for demonstration purposes only as the existing CCI function works just fine. However, when you are trying out something new or in this case an application of a different data structure (array) its always great to check your results against a known entity. If your program replicates the known entity, then you know that you are close to a solution. The CCI function accesses data via the globalHigh, Low and Close data streams and then applies a mathematical formula to derive a result. <
Derive Your Function First
Create the function first by prototyping what the function will need in the formal parameter list (funciton header). The first thing the function will need is the data – here is what it will look like.
OHLCArray[1,1] =1210903.00 // DATE
OHLCArray[1,2] = 4420.25 // OPEN
OHLCArray[1,3] = 4490.25 // HIGH
OHLCArray[1,4] = 4410.25 // LOW
OHLCArray[1,5] = 4480.75 // CLOSE
OHLCArray[2,1] =1210904.00 // DATE
OHLCArray[2,2] = 4470.25 // OPEN
OHLCArray[2,3] = 4490.25 // HIGH
OHLCArray[2,4] = 4420.25 // LOW
OHLCArray[2,5] = 4440.75 // CLOSE
Visualize 2-D Array as a Table
Column 1
Column 2
Column 3
Column 4
Column 5
1210903
44202.25
4490.25
4410.25
4480.75
1210904
4470.25
4490.25
4420.25
4440.76
The CCI function is only concerned with H, L, C and that data is in columns 3, 4, 5. If you know the structure of the array before you program the function, then you now which columns or fields you will need to access. If you don’t know the structure beforehand , then that information would need to be passed into the function as well. Let us assume we know the structure. Part of the housekeeping that I mentioned earlier was keeping track of the current row where the latest data is being stored. This “index” plus the length of the CCI indicator is the last two things we will need to know to do a proper calculation.
CCI_2D Function Formal Parameter List
// This function needs data, current data row, and length // Notice how I declare the OHLCArray using the dummy X and Y // Variable - this just tells TradeStation to expect 2-D array // ------------------ // | | // * * inputs: OHLCArray[x,y](numericArray), currentRow(numericSimple), length(numericSimple); // *** // ||| //---------------------------- // Also notice I tell TradeStation that the array is of type numeric // We are not changing the array but if we were, then the type would be // numericArrayRef - the actual location in memory not just a copy
CCI_2D Formal Parameter List
2-D Array Must Run Parallels with Actual Data
The rest of the function expects the data to be just like the H, L, C built-in data – so there cannot be gaps. This is very important when you pack the data and you will see this in the function driver code a.k.a an indicator. The data needs to align with the bars. Now if you are using large arrays this can slow things down a bit. You can also shuffle the array and keep the array size to a minimum and I will post how to do this in a post later this week. The CCI doesn’t care about the order of the H,L,C as long as the last N element is the latest values.
if AvgDev = 0 then CCI_2D = 0 else CCI_2D = ( value1 + value2 + value3 - Mean ) / ( .015 * AvgDev ) ;
CCI-2D Function
This function could be streamlined, but I wanted to show you how to access the different data values with the currentRow variable and columns 3, 4, and 5. I extract these data and store them in Values variables. Notice the highlighted line where I check to make sure there are enough rows to handle the calculation. If you try to access data before row #1, then you will get an out of bounds error and a halt to program execution.
Notice lines 16 and 17 where I am plotting both function results – my CCI_2D and CCI. Also notice how I increment numRows on each bar – this is the housekeeping that keeps that array synched with the chart. In the following graphic I use 14 for CCI_2D and 9 for the built-in CCI.
Now the following graphic uses the same length parameters for both functions. Why did just one line show up?
Make Your Unique Coding Replicate a Known Entity – If You Can
Here is where your programming is graded. The replication of the CCI using a 2-D Array instead of the built-in H, L, C data streams, if programmed correctly, should create the exact same results and it does, hence the one line. Big Deal right! Why did I go through all this to do something that was already done? Great programming is not supposed to re-invent the wheel. And we just did exactly that. But read between the lines here. We validated code that packed a 2-D array with data and then passed it to a function that then accessed the data correctly and applied a known formula and compared it to a known entity. So now you have re-usable code for passing a 2-D array to a function. All you have to do is use the template and modify the calculations. Re-inventing the wheel is A-Okay if you are using it as a tool for validation.
Backtesting with [Trade Station,Python,AmiBroker, Excel]. Intended for informational and educational purposes only!
Get All Five Books in the Easing Into EasyLanguage Series - The Trend Following Edition is now Available!
Announcement – A Trend Following edition has been added to my Easing into EasyLanguage Series! This edition will be the fifth and final installment and will utilize concepts discussed in the Foundation editions. I will pay respect to the legends of Trend Following by replicating the essence of their algorithms. Learn about the most prominent form of algorithmic trading. But get geared up for it by reading the first four editions in the series now. Get your favorite QUANT the books they need!
This series includes five editions that covers the full spectrum of the EasyLanguage programming language. Fully compliant with TradeStation and mostly compliant with MultiCharts. Start out with the Foundation Edition. It is designed for the new user of EasyLanguage or for those you would like to have a refresher course. There are 13 tutorials ranging from creating Strategies to PaintBars. Learn how to create your own functions or apply stops and profit objectives. Ever wanted to know how to find an inside day that is also a Narrow Range 7 (NR7?) Now you can, and the best part is you get over 4 HOURS OF VIDEO INSTRUCTION – one for each tutorial.
This book is ideal for those who have completed the Foundation Edition or have some experience with EasyLanguage, especially if you’re ready to take your programming skills to the next level. The Hi-Res Edition is designed for programmers who want to build intraday trading systems, incorporating trade management techniques like profit targets and stop losses. This edition bridges the gap between daily and intraday bar programming, making it easier to handle challenges like tracking the sequence of high and low prices within the trading day. Plus, enjoy 5 hours of video instruction to guide you through each tutorial.
The Advanced Topics Edition delves into essential programming concepts within EasyLanguage, offering a focused approach to complex topics. This book covers arrays and fixed-length buffers, including methods for element management, extraction, and sorting. Explore finite state machines using the switch-case construct, text graphic manipulation to retrieve precise X and Y coordinates, and gain insights into seasonality with the Ruggiero/Barna Universal Seasonal and Sheldon Knight Seasonal methods. Additionally, learn to build EasyLanguage projects, integrate fundamental data like Commitment of Traders, and create multi-timeframe indicators for comprehensive analysis.
The Day Trading Edition complements the other books in the series, diving into the popular approach of day trading, where overnight risk is avoided (though daytime risk still applies!). Programming on high-resolution data, such as five- or one-minute bars, can be challenging, and this book provides guidance without claiming to be a “Holy Grail.” It’s not for ultra-high-frequency trading but rather for those interested in techniques like volatility-based breakouts, pyramiding, scaling out, and zone-based trading. Ideal for readers of the Foundation and Hi-Res editions or those with EasyLanguage experience, this book offers insights into algorithms that shaped the day trading industry.
For thirty-one years as the Director of Research at Futures Truth Magazine, I had the privilege of collaborating with renowned experts in technical analysis, including Fitschen, Stuckey, Ruggiero, Fox, and Waite. I gained invaluable insights as I watched their trend-following methods reach impressive peaks, face sharp declines, and ultimately rebound. From late 2014 to early 2020, I witnessed a dramatic downturn across the trend-following industry. Iconic systems like Aberration, CatScan, Andromeda, and Super Turtle—once thriving on robust trends of the 1990s through early 2010s—began to falter long before the pandemic. Since 2020 we have seen the familiar trends return. Get six hours of video instruction with this edition.
Pick up your copies today – e-Book or paperback format – at Amazon.com