Category Archives: EasyLanguage

EasyLanguage Code for Optimal F (Multi-Charts and VBA too!)

Optimal F in EasyLanguage for TradeStation and MultiCharts

Here is the code for the Optimal F calculation.  For a really good explanation of Optimal F I refer you to Ralph Vince’s Book Portfolio Management FORMULAS.  We had programmed this years ago for our Excalibur software and I was surprised the EasyLanguage code was really all that accessible on the internet.  Finding the optimal f is found through an iterative process or in programmers terms a loop.  The code is really quite simple and I put it into a Function.  I decided to create this function because I wanted to demonstrate the ideas from my last post on how a function can store variable and array data.  Plus this code should be readily available somewhere out there.

//OptimalFGeo by George Pruitt
//My interpretation Sept. 2018
//www.georgepruitt.com
//georgeppruitt@gmail.com

input: minNumTrades(numericSimple);
vars: totalTradesCount(0),tradeCnt(0);
array: tradesArray[500](0);

vars: iCnt(00),jCnt(00),grandTot(0),highI(0);
vars: optF(0.0),gMean(0.0),fVal(0.0),HPR(0.0),TWR(0.0),hiTWR(0.0);
vars: biggestLoser(0.0),gat(0.0);

totalTradesCount = totalTrades;
If totalTradesCount > totalTradesCount[1] then
begin
	tradeCnt = tradeCnt + 1; 
	tradesArray[tradeCnt] = positionProfit(1);
end;

// Taken from my Fortran library - GPP and Vince Book PMF

optF = 0.0;
gMean = 1.00;
gat   = 0.00;
//Only calculate if new trade
IF(tradeCnt>minNumTrades and totalTradesCount > totalTradesCount[1]) then 
Begin
	biggestLoser = 0;
	grandTot = 0;
	For iCnt = 1 to tradeCnt //get the biggest loser
	begin
   		grandTot = grandTot + tradesArray[iCnt];
   		IF(tradesArray[iCnt]<biggestLoser) then biggestLoser = tradesArray[iCnt];
	end;
//	print(grandTot," ",biggestLoser);
	IF({grandTot > 0 and} biggestLoser <0) then 
	begin
//		print("Inside TWR Calculations");
		highI = 0;
		hiTWR = 0.0;
		for iCnt = 1 to 100
		begin
			fVal = .01 * iCnt;
			TWR = 1.0;
			for jCnt = 1 to tradeCnt // calculate the Terminal Wealth Relative
			begin
    			HPR = 1. + (fVal * (-1*tradesArray[jCnt]) / biggestLoser);
    			TWR = TWR * HPR;
 //   			print(fVal," ",iCnt," " ,jCnt," Trades ",tradesArray[jCnt]," HPR ",HPR:6:4," TWR : ",TWR:6:4," hiTWR",hiTWR:6:4," bl ",biggestLoser);
			end;
//			print(iCnt," ",TWR," ",hiTWR);
			IF(TWR>hiTWR) THEN
			begin
    			hiTWR = TWR;
    			optF = fVal;    	// assign optF to fVal in case its the correct one		
			end
			else
    			break;                     //highest f found - stop looping
		end;		
		If (TWR <= hiTWR or optF >= 0.999999) then
		begin
			TWR  = hiTWR;
			OptimalFGeo = optF;  //assign optF to the name of the function
		end;	
		gmean = power(TWR,(1.0 / tradeCnt));
		
		if(optF<>0) then GAT   = (gMean - 1.0) * (biggestLoser / -(optF));		
		print(d," gmean ",gmean:6:4," ",GAT:6:4);  // I calculate the GMEAN and GeoAvgTrade
	end;
end;
Optimal F Calculation by Ralph Vince code by George Pruitt

VBA version of Optimal F

For those of you who have a list of trades and want to see how this works in Excel here is the VBA code:

Sub OptimalF()

    Dim tradesArray(1000) As Double
    i = 0
    biggestLoser = 0#
    Do While (Cells(3 + i, 1) <> "")
        tradesArray(i) = Cells(3 + i, 1)
        If tradesArray(i) < bigLoser Then biggestLoser = tradesArray(i)
        i = i + 1
    Loop
    tradeCnt = i - 1
    highI = 0
    hiTWR = 0#
    rc = 3
    For fVal = 0.01 To 1 Step 0.01
        TWR = 1#
        For jCnt = 0 To tradeCnt
            HPR = 1# + (fVal * (-1 * tradesArray(jCnt)) / biggestLoser)
            TWR = TWR * HPR
            Cells(rc, 5) = jCnt
            Cells(rc, 6) = tradesArray(jCnt)
            Cells(rc, 7) = HPR
            Cells(rc, 8) = TWR
            rc = rc + 1
        Next jCnt
        Cells(rc, 9) = fVal
        Cells(rc, 10) = TWR
        rc = rc + 1

        If (TWR > hiTWR) Then
            hiTWR = TWR
            optF = fVal
        Else
            Exit For
        End If

    Next fVal
    If (TWR <= hiTWR Or optF >= 0.999999) Then
        TWR = hiTWR
        OptimalFGeo = optF
    End If
    Cells(rc, 8) = "Opt f"
    Cells(rc, 9) = optF
    rc = rc + 1
    gMean = TWR ^ (1# / (tradeCnt + 1))
    If (optF <> 0) Then GAT = (gMean - 1#) * (biggestLoser / -(optF))
    Cells(rc, 8) = "Geo Mean"
    Cells(rc, 9) = gMean
    rc = rc + 1
    Cells(rc, 8) = "Geo Avg Trade"
    Cells(rc, 9) = GAT

End Sub
VBA code for Optimal F

I will attach the eld and .xlsm file a little later.

 

 

 

Function Variable Data Survives Between Calls

Function Variable Data Survives from One Call to the Next – A Pretty Nifty Tool in EasyLanguage!

Creating a function that can store data and then have that data survive on successive function calls without having to pass information back and forth is really a cool and powerful tool in EasyLanguage.  In most programming languages, the variables defined in a function are local to that particular bit of code and once program execution exits the function, then the data is destroyed.  There are two exceptions (in other languages) that come to mind – if the variable is passed back and forth via their addresses, then the data can be maintained or if the variable is global in scope to the function and the calling program.  EasyLanguage prevents you from having to do this and this can definitely save on headaches.  I wrote a function that defines an array that will hold a list of trades.  Once the number of trades reaches a certain level, I then calculate a moving average of the last 10 trades.  The average is then passed back to the calling strategy.  Here is the simple code to the function.

 

{Function Name:   StoreTradesFunc by George Pruitt}
{Function to Calculate the average trade for past N trades.
 ----------------------------------------------------------
 Function remembers the current trade count in tradeCnt.
 It also remembers the values in the array tradesArray.
 It does this between function calls. 
 Values - simple and array - undoubtedly are global to the function}
 
input: avgTradeCalcLen(numericSimple);
vars: totalTradesCount(0),tradeCnt(0);
array: tradesArray[500](0);

totalTradesCount = totalTrades;
If totalTradesCount > totalTradesCount[1] then
begin
	tradeCnt = tradeCnt + 1;
	tradesArray[tradeCnt] = positionProfit(1);
//	print("Storing data ",tradesArray[tradeCnt]," ",tradeCnt);
end;

If totalTrades > avgTradeCalcLen then
begin
	Value2 = 0;
	For value1 = totalTrades downTo totalTrades - avgTradeCalcLen
	begin
		Value2 = value2 + tradesArray[value1];
	end;
	print("Sum of last 10 Trades: ",value2);
	StoreTradesFunc = value2/avgTradeCalcLen;
end;
Store A List of Trades in a Function

I call this function on every bar (daily would be best but you could do it on intra-day basis) and it polls the function/keyword totalTrades to see if a new trade has occurred.  If one has, then the variable tradeCnt is incremented and the trade result is inserted into the tradesArray array by using the tradeCnt as the array index.  When you come back into the function from the next bar of data tradeCnt and tradesArray are still there for you and most importantly still intactIn other words there values are held static until you change them and remembered.  This really comes in handy when you want to store all the trades in an array and then do some type of calculation on the trades and then have that information readily available for use in the strategy.  My example just provides the average trade for the past ten trades.  But you could do some really exotic things like Optimal F.  The thing to remember is once you define a variable or an array in a function and start dumping stuff in them, the stuff will be remembered throughout the life of the simulation.  The function data and variables are encapsulated to just the function scope – meaning I can’t access tradesArray outside of the function.  One last note – notice how I was able to determine a new trade had occurred.  I assigned the result of totalTrades to my own variable totalTradesCount and then compared the value to the prior bar’s value.  If the values were different than I knew a new trade had just completed.

Python Script To Import List of Trades into TradeStation’s EasyLanguage – Sort of

Converting A List of Trades, Dates and Prices Into EasyLanguage Arrays:

As the old saying goes “a picture is worth a thousand words!”  Have you ever been given a list of trades like this:

Sell Short,20010622,1178.50 
Buy to Cover,20010626,1159.75 
Sell Short,20010801,1150.00 
Buy to Cover,20010807,1139.75 
Sell Short,20010814,1129.00 
Buy to Cover,20010816,1117.25 
Sell Short,20011001,976.75 
Buy to Cover,20011004,1016.75 
Sell Short,20011107,1053.00 
Buy to Cover,20011123,1069.50 
Sell Short,20011219,1076.25 
Buy to Cover,20020102,1075.00 
Sell Short,20020129,1067.25 
Buy to Cover,20020131,1046.75 
Sell Short,20020131,1046.75 
Buy to Cover,20020205,1026.75 
Sell Short,20020520,1033.25 
Buy to Cover,20020522,1011.50 
Sell Short,20020731,832.00 
Buy to Cover,20020805,792.50 
Sell Short,20020812,834.00 
Buy to Cover,20020814,811.75 
Sell Short,20020911,838.50 
Buy to Cover,20020913,816.75 
List of Trades : Order, Date, Price

But really wanted to see this:

I have created a small Python script that will take a list of trades like those listed in table above and create the following EasyLanguage:

arrays: DateArr[500](0),TradeArr[500](""),PriceArr[500](0);
DateArr[0]=1010622;TradeArr[0]="SS";PriceArr[0]=1178.5;
DateArr[1]=1010626;TradeArr[1]="SX";PriceArr[1]=1159.75;
DateArr[2]=1010801;TradeArr[2]="SS";PriceArr[2]=1150.0;
DateArr[3]=1010807;TradeArr[3]="SX";PriceArr[3]=1139.75;
DateArr[4]=1010814;TradeArr[4]="SS";PriceArr[4]=1129.0;
DateArr[5]=1010816;TradeArr[5]="SX";PriceArr[5]=1117.25;
DateArr[6]=1011001;TradeArr[6]="SS";PriceArr[6]=976.75;
DateArr[7]=1011004;TradeArr[7]="SX";PriceArr[7]=1016.75;
DateArr[8]=1011107;TradeArr[8]="SS";PriceArr[8]=1053.0;
DateArr[9]=1011123;TradeArr[9]="SX";PriceArr[9]=1069.5;
DateArr[10]=1011219;TradeArr[10]="SS";PriceArr[10]=1076.25;
DateArr[11]=1020102;TradeArr[11]="SX";PriceArr[11]=1075.0;
DateArr[12]=1020129;TradeArr[12]="SS";PriceArr[12]=1067.25;
DateArr[13]=1020131;TradeArr[13]="SX";PriceArr[13]=1046.75;
DateArr[14]=1020131;TradeArr[14]="SS";PriceArr[14]=1046.75;
DateArr[15]=1020205;TradeArr[15]="SX";PriceArr[15]=1026.75;
DateArr[16]=1020520;TradeArr[16]="SS";PriceArr[16]=1033.25;
DateArr[17]=1020522;TradeArr[17]="SX";PriceArr[17]=1011.5;
Converting list of trades to EasyLanguage

This just creates the arrays that you can use to graph the trades on a chart.  If you are using exact prices you got to make sure your data aligns with the prices in the list of trades.  If you are only entering on the open or the close of the bar then the price array isn’t necessary.

The following Python script will also be helpful if you want to learn how to open a file in csv format, read it into lists, convert it and then save the output to a file.

#-------------------------------------------------------------------------------
# Name:        Read csv file via askOpen and save txt file via askSave
# Purpose:     Read the trade metrics from a TradeStation csv format
#              and build arrays from the information to display on charts in
#              TradeStation
# Author:      georg
#
# Created:     29/08/2018
# Copyright:   (c) georg 2018
#-------------------------------------------------------------------------------
import csv
import tkinter as tk
import os.path
from tkinter.filedialog import askopenfilenames
from tkinter.filedialog import asksaveasfilename

tradeType = list()
tradeDate = list()
tradePrice = list()

def main():
    root = tk.Tk()
    root.withdraw()
    files = askopenfilenames(filetypes=(('CSV files', '*.csv'),
                                       ('TXT files', '*.txt')),
                                       title='Select CSV format only!')
    fileList = root.tk.splitlist(files)
    fileListLen = len(fileList)


# make sure you know the format ahead of time
# I know "Buy",20180828,2745.75
#
    cnt = 0
    for files in range(0,fileListLen):
        head,tail = os.path.split(fileList[files])
        with open(fileList[files]) as f:
            f_csv = csv.reader(f)
            for row in f_csv:
                numCols = len(row)
                tradeType.append(row[0])
                tradeDate.append(int(row[1]))
                tradePrice.append(float(row[2]))
                cnt += 1
        f.close


    filename = asksaveasfilename(title="Will Save File with '.txt'",defaultextension=".txt")
#    filename = filename + '.txt'
    target1 = open(filename,'w')
    outString = 'arrays: DateArr[500](0),TradeArr[500](0),PriceArr[500](0);\n'
    target1.write(outString)
    for x in range(0,cnt):
        if tradeType[x] == "Sell Short": tradeType[x] = "SS"
        if tradeType[x] == "Buy": tradeType[x] = "B"
        if tradeType[x] == "Buy to Cover": tradeType[x] = "SX"
        if tradeType[x] == "Sell": tradeType[x] = "LX"
        outString = 'DateArr['+str(x)+']='+str(tradeDate[x]-19000000)+';TradeArr['+str(x)+']="'+tradeType[x]+'";PriceArr['+str(x)+']='+str(tradePrice[x])+';\n'
        target1.write(outString)
    target1.close


if __name__ == '__main__':
    main()
Python Script Open, Read, Convert and Write A File Using TK Dialogs

And here is the EasyLanguage code that will step through the arrays and place the trades accordingly.  I noticed that sometimes two trades could occur on the same bar, but only two and you will notice in the code where I programmed this occurrence.

vars: cnt(0);

If date of tomorrow = DateArr[cnt] then
Begin
	print("Inside: ",d," ",dateArr[cnt]);
	If tradeArr[cnt] = "B" then
	begin
		buy next bar at PriceArr[cnt] stop;
	end;
	If tradeArr[cnt] = "LX" then
	begin
		sell next bar at PriceArr[cnt] stop;
	end;
		If tradeArr[cnt] = "SS" then
	begin
		sellShort next bar at PriceArr[cnt] stop;
	end;
	If tradeArr[cnt] = "SX" then
	begin
		buyToCover next bar at PriceArr[cnt] stop;
	end;
	cnt = cnt + 1;
	If DateArr[cnt] = DateArr[cnt-1] then
	Begin
		print("two trades same day ",d," ",dateArr[cnt]);
		If tradeArr[cnt] = "B" then
		begin
			buy next bar at PriceArr[cnt] stop;
		end;
		If tradeArr[cnt] = "LX" then
		begin
			sell next bar at PriceArr[cnt] stop;
		end;
		If tradeArr[cnt] = "SS" then
		begin
	    	print("looking to go short at ",PriceArr[cnt]);
			sellShort next bar at PriceArr[cnt] stop;
		end;
		If tradeArr[cnt] = "SX" then
		begin
			buyToCover next bar at PriceArr[cnt] stop;
		end;
		cnt = cnt + 1;
	end;	
end;
EasyLanguage Snippet To Execute Trades Stored in Arrays

 

 

Using TradeStation’s COT Indicator to Develop a Trading System

TradeStation’s COT (Commitment of Traders) Indicator:

TradeStation COT Indicator

TradeStation now includes the historic COT (Commitment of Traders) report in the form of an indicator.

If you can plot it then you can use it in a Strategy.  The following code listing takes the Indicator code and with very few modifications turns it into a trading system.

{
Net positions of various groups of traders from the CFTC's weekly Commitments of
Traders report.  "Net" positions are calculated by taking the number of contracts
that a group of traders is long and subtracting the number of contracts that that
group of traders is short.

The user input "FuturesOnly_Or_FuturesAndOptions_1_or_2" determines whether the
CFTC's "Futures Only" report is used, or the "Futures and Options" report is
used to determine the positions of the various groups of traders.  By default, the
"Futures Only" report is used.

Plot1:  Commercial traders' net position
Plot2:  Non-commercial traders' net position
Plot3:  Speculators' net positions, for speculators not of reportable size
Plot4:  Zero line

If an error occurs retrieving one of the values used by this study, or if the value
is not applicable or non-meaningful, a blank cell will be displayed in RadarScreen or
in the OptionStation assets pane.  In a chart, no value will be plotted until a value
is obtained without generating an error when retrieved.
}

input:  FuturesOnly_Or_FuturesAndOptions_1_or_2( 1 ) ; { set to 1 to use the CFTC's
 "Futures Only" report, set to 2 (or to any value other than 1) to use the "Futures
 and Options" report }

variables:
	Initialized( false ),
	FieldNamePrefix( "" ),
	CommLongFieldNme( "" ),
	CommShortFieldNme( "" ),
	NonCommLongFieldNme( "" ),
	NonCommShortFieldNme( "" ),
	SpecLongFieldNme( "" ),
 	SpecShortFieldNme( "" ),
    CommLong( 0 ),
	oCommLongErr( 0 ),
	CommShort( 0 ),
	oCommShortErr( 0 ),
	NonCommLong( 0 ),
	oNonCommLongErr( 0 ),
	NonCommShort( 0 ),
	oNonCommShortErr( 0 ),
	SpecLong( 0 ),
	oSpecLongErr( 0 ),
	SpecShort( 0 ),
	oSpecShortErr( 0 ),
	CommNet( 0 ),
	NonCommNet( 0 ),
	SpecNet( 0 ) ;

if Initialized = false then
	begin
	if Category > 0 then
		RaiseRuntimeError( "Commitments of Traders studies can be applied only to" +
		 " futures symbols." ) ;
	Initialized = true ;
	FieldNamePrefix = IffString( FuturesOnly_Or_FuturesAndOptions_1_or_2 = 1,
	 "COTF-", "COTC-" ) ;
	CommLongFieldNme = FieldNamePrefix + "12" ;
	CommShortFieldNme = FieldNamePrefix + "13" ;
	NonCommLongFieldNme = FieldNamePrefix + "9" ;
	NonCommShortFieldNme = FieldNamePrefix + "10" ;
	SpecLongFieldNme = FieldNamePrefix + "16" ;
 	SpecShortFieldNme = FieldNamePrefix + "17" ;	
	end ;

CommLong = FundValue( CommLongFieldNme, 0, oCommLongErr ) ;
CommShort = FundValue( CommShortFieldNme, 0, oCommShortErr) ;
NonCommLong = FundValue( NonCommLongFieldNme, 0, oNonCommLongErr ) ;
NonCommShort = FundValue( NonCommShortFieldNme, 0, oNonCommShortErr );
SpecLong = FundValue( SpecLongFieldNme, 0, oSpecLongErr ) ; 
SpecShort = FundValue( SpecShortFieldNme, 0, oSpecShortErr ) ;

if oCommLongErr = fdrOk and oCommShortErr = fdrOk then
	begin
	CommNet = CommLong - CommShort ;
	Print ("CommNet ",commNet);
	end ;

if oNonCommLongErr = fdrOk and oNonCommShortErr = fdrOk then
	begin
	NonCommNet = NonCommLong - NonCommShort ;
	end ;

if oSpecLongErr = fdrOk and oSpecShortErr = fdrOk then
	begin
	SpecNet = SpecLong - SpecShort ;
	end ;
If CommNet < 0  then sellShort tomorrow at open;
If CommNet > 0 then buy tomorrow at open;


{ ** Copyright (c) 2001 - 2010 TradeStation Technologies, Inc. All rights reserved. ** 
  ** TradeStation reserves the right to modify or overwrite this analysis technique 
     with each release. ** }
COT Indicator Converted To Strategy

Line numbers 90 and 91 informs TS to take a long position if the Net Commercial Interests are positive and a short position if the Commercials are negative.  I kept the original comments in place in  case you wanted to see how the indicator and its associated function calls work.  The linchpin of this code lies in the function call FundValue.  This function call pulls fundamental data from the data servers and provides it in an easy to use format.  Once you have the data you can play all sorts of games with it.  This is just a simple system to see if the commercial traders really do know which direction the market is heading.

if you test this strategy on the ES you will notice a downward sloping 45 degree equity curve.  This leads me to believe the commercials are trying their best to  use the ES futures to hedge other market positions.  If you go with the non Commercials you will see  a totally different picture.  To do this just substitute the following two lines:

If CommNet < 0 then sellShort tomorrow at open;
If CommNet > 0 then buy tomorrow at open;

With:

If NonCommNet < 0 then sellShort tomorrow at open;
If NonCommNet > 0 then buy tomorrow at open;

I said a totally different picture not a great one.  Check out if the speculators know better.

Anatomy Of Mean Reversion in EasyLanguage

Look at this equity curve:

As long as you are in a bull market buying dips can be very consistent and profitable.  But you want to use some type of entry signal and trade management other than just buying a dip and selling a rally.  Here is the anatomy of a mean reversion trading algorithm that might introduce some code that you aren’t familiar.  Scroll through the code and I will  summarize below.

inputs: mavlen(200),rsiLen(2),rsiBuyVal(20),rsiSellVal(80),holdPeriod(5),stopLoss$(4500);
vars: iCnt(0),dontCatchFallingKnife(false),meanRevBuy(false),meanRevSell(false),consecUpClose(2),consecDnClose(2);

Condition1 = c > average(c,mavLen);

Condition2 = rsi(c,rsiLen) < rsiBuyVal;
Condition3 = rsi(c,rsiLen) > rsiSellVal;


Value1 = 0;
Value2 = 0;

For iCnt = 0 to consecUpClose - 1 
Begin
	value1 = value1 + iff(c[iCnt] > c[iCnt+1],1,0);
end;

For iCnt = 0 to consecDnClose - 1 
Begin
	Value2 = value2 + iff(c[iCnt] < c[iCnt+1],1,0);
end;

dontCatchFallingKnife = absValue(C - c[1]) < avgTrueRange(10)*2.0;

meanRevBuy = condition1 and condition2 and dontCatchFallingKnife;
meanRevSell =  not(condition1) and condition3 and dontCatchFallingKnife;

If meanRevBuy then buy this bar on close;
If marketPosition = 1 and condition1 and value1 >= consecUpClose then sell("ConsecUpCls") this bar on close;

If meanRevSell then sellShort this bar on close;
If marketPosition = -1 and not(condition1) and value2 >= consecDnClose then buyToCover this bar close;

setStopLoss(stopLoss$);


If barsSinceEntry = holdPeriod then
Begin
	if marketPosition = 1 and not(meanRevBuy) then sell this bar on close;
	if marketPosition =-1 and not(meanRevSell) then buytocover this bar on close;
end;
Mean Reversion System

I am using a very short term RSI indicator, a la Connors, to initiate long trades.  Basically when the 2 period RSI dips below 30 and the close is above the 200-day moving average I will buy only if I am not buying “a falling knife.”  In February several Mean Reversion algos kept buying as the market fell and eventually got stopped out with large losses.  Had they held on they probably would have been OK.  Here I don’t buy if the absolute price difference between today’s close and yesterday’s is greater than 2 X the ten day average true range.  Stay away from too much “VOL.”

Once a trade is put on I use the following logic to keep track of consecutive closing relationships:

For iCnt = 0 to consecUpClose - 1 
Begin
	value1 = value1 + iff(c[iCnt] > c[iCnt+1],1,0);
end;
Using the IFF function in EasyLanguage

Here I am using the IFF function to compare today’s close with the prior day’s.  iCnt is a loop counter that goes from 0 to 1. IFF checks the comparison and if it’s true it returns the first value after the comparison and if false it returns the last value.  Here if I have two consecutive up closes value1 accumulates to 2.  If I am long and I have two up closes I get out.  With this template you can easily change this by modifying the input:  consecUpClose.  Trade management also includes a protective stop and a time based exit.  If six days transpire without two up closes then the system gets out – if the market can’t muster two positive closes, then its probably not going to go anywhere.  The thing with mean reversion, more so with other types of systems, is the use or non use of a protective stop.  Wide stops are really best, because you are betting on the market to revert.  Look at the discrepancy of results using different stop levels on this system:

Here an $1,800 stop only cut the max draw down by $1,575.  But it came at a cost of $17K in profit.  Stops, in the case of Mean Reversion, are really used for the comfort of the trader.

This code has the major components necessary to create a complete trading system.  Play around with the code and see if you can come up with a better entry mechanism.

Updated Pattern Smasher in EasyLanguage

Update To Original Pattern Smasher

What will you learn : string manipulation, for-loops, optimization

Before proceeding I would suggest reading my original post on this subject.    If you believe the relationship of the last few bars of data can help determine future market direction, then this post will be in you wheel house.  Another added benefit is that you will also learn some cool EasyLanguage.

Original post was limited to four day patterns!

This version is limitless (well not really, but pretty close).  Let’s stick with the original string pattern nomenclature (+ + – – : two up closes followed by two down closes.)  Let’s also stick with our binary pattern representation:

Pattern # 2^3 2^2 2^1 1
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 1

Remember a 0 represents a down close and a 1 represents an up close.  We will deviate from the original post by doing away with the array and stick with only strings (which are really just arrays of characters.)  This way we won’t have to worry about array manipulation.

How to create a dynamic length string pattern

This was the difficult part of the programming.  I wanted to be able to optimize 3, 4 and 5 day patterns and I wanted to control this with using just inputs.  I discovered that pattern three is different in a three day pattern than it is in a four day pattern: in a three day pattern it is 011 or – + + and in a four day pattern it is 0011 or – – + +.  Since I am counting 0’s as down closes, pattern #3 depends on the ultimate size of the pattern string.  No worries I will have eventually have another version where I utilize a different value for down closes and we can then have holes in our string patterns.  But I digress – so to differentiate the patterns based on the pattern length I included a maxPatternLen input.  So if maxPatternLen is three and we are trying to match pattern #3 then we will be looking for 011 and not 0011.  That was an easy fix.  But then I wanted to build a string pattern based on this input and the pattern number dynamically.  Here is some psuedo code on how I figured it out.


{Psuedo code to translate pattern number into binary number}
patternNumber = 3
maxPatternLen = 3

numBits = 0    						// stick with binary representation
testValue = 0						// temporary test value
numBits = maxPatternLen-1  			// how many bits will it take to get to the
									// center of - or numBits to represent max
									// number of patterns or 2^numBits
currentBit =numBits					// start wit current bit as total numBits

value1 = patternOptTest				// value1 represents current pattern number
testString = ""  					// build test string from ground up


for icnt = numBits downto 0			//building string from left to right
begin       						// notice keyword downto
	if power(2,currentBit) > value1 then  // must use power function in EL
	begin							// if the very far left bit value > 
		testString = testString + "-"	  // patten number then plug in a "-"
	end
	else
	begin							// else plug in a "+" and deccrement by
		testString = testString + "+"	 // that bits value - if its the 3rd bit
	value1 = value1 - power(2,currentBit)// then decrement by 8
	end;
	currentBit = currentBit - 1		// move onto the next bit to the right
end;
Pseudocode for Binary Representation of Pattern #

Now if you want to optimize then you must make sure your pattern number search space or range can be contained within maxPatternLen.  For example, if you want to test all the different combinations of a four day pattern, then your maxPatternLen would naturally be four and you would optimize the pattern number from 0 to 15.  Don’t use 1-16 as I use zero as the base.  A five day pattern would include the search space from 0 – 31.  The rest of the code was basically hacked from my original post.   Here is the rest of the code to do optimizations on different length pattern strings.  Notice how I use strings, for-loops and comparisons.

input: buyPattern("+++-"),sellPattern("---+"),patternOptimize(True),patternOptTest(7),maxPatternLen(3),patternOptBuySell(1),
	   stopLoss$(2000),profitTarg$(2000),holdDays(5);
vars: buyPatternString(""),sellPatternString(""),buyPatternMatch(""),sellPatternMatch(""),numBits(0),testValue(0),currentBit(0),
      remainder(0),value(0),icnt(0),testString(""),numCharsInBuyPattern(0),numCharsInSellPattern(0);
vars:okToBuy(false),okToSell(false);

buyPatternMatch = buyPattern;
sellPatternMatch = sellPattern;
numCharsInBuyPattern = strLen(buyPatternMatch);
numCharsInSellPattern = strLen(sellPatternMatch);

If patternOptimize then
begin
	numBits = 0;
    testValue = 0;
    value = maxPatternLen;
    numBits = maxPatternLen-1;  
    currentBit =numBits;
    remainder = patternOptTest;
    testString = "";
    for icnt = numBits downto 0
    begin       
        if power(2,currentBit) > value1 then
        begin
            testString = testString + "-";
        end
        else
        begin
            testString = testString + "+";
            remainder = remainder - power(2,currentBit);
        end;
        currentBit = currentBit - 1;
	end;
	numCharsInBuyPattern = maxPatternLen;
	numCharsInSellPattern = maxPatternLen;
	if patternOptBuySell = 1 then
	Begin
		buyPatternMatch = testString;
		sellPatternMatch = "0";
	end;
	If patternOptBuySell = 2 then
	Begin
		buyPatternMatch = "0";
		sellPatternMatch = testString;
	end;
end;
	

buyPatternString = "";
sellPatternString = "";

For icnt = numCharsInBuyPattern-1 downto 0
Begin
	If close[icnt] >= close[icnt+1] then buyPatternString = buyPatternString + "+";
	If close[icnt] < close[icnt+1] then buyPatternString = buyPatternString + "-";
end;
For icnt = numCharsInSellPattern-1 downto 0
Begin
	If close[icnt] >= close[icnt+1] then sellPatternString = sellPatternString + "+";
	If close[icnt] < close[icnt+1] then sellPatternString = sellPatternString + "-";
end;


okToBuy = false;
okToSell = false;

if buyPatternMatch <> "" then
	If buyPatternString = buyPatternMatch then okToBuy = true;
If buyPatternMatch = "" then
	okToBuy = true;
If sellPattern <> "" then
	If sellPatternString = sellPatternMatch then okToSell = true;
If sellPatternMatch = "" then
	okToSell = true;
	
If okToBuy then buy next bar at open;
If okToSell then sellshort next bar at open;

If marketPosition = 1 and barsSinceEntry > holdDays then sell next bar at open;
If marketPosition = -1 and barsSinceEntry > holdDays then buytocover next bar at open;

setStopLoss(stopLoss$);
setProfitTarget(profitTarg$);

If lastBarOnChart then print(d," ",buyPatternMatch);
Final Version of New Pattern Smasher

Also see how I incorporate a profit target and protective stop.  I use the built in BarsSinceEntry function to count the number of days I am in a trade so I can utilize a time based exit.  Here is an interesting equity curve I developed using a two day pattern ( – –) to go long.

Register on the website and I will email you an ELD of the improved Pattern Smasher.  Or just shoot me an email.

 

 

Making Trading Decisions on Current Month’s Profit/Loss

Keeping track of intra-month profit or loss

In real time trading I have noticed that once you reach a certain loss for the month its best, sometimes, to circle the wagons and quit trading until the beginning of the next month.  This concept works best for very short term or day trade algorithms, as its very easy to get started back up.  You can do this with Trend Following, but you must build a logical and replicable process for re-entering existing positions.  Let’s assume a trading algorithm whose averaging losing month is $1500 and you are currently down $2000 – what are the chances that you will revert to the mean or draw down further?  Probably 50/50.  Who knows you might turn around and actually make money by month’s end.  If you review a track record of a hedge fund manager, trader, or algorithm and they show a bar chart of monthly returns and there sticking out like a sore thumb is a big down bar, that kind of makes you think that could happen again.  If you can control the monthly downside without sacrificing the existing Profit:DrawDown ratio, then why not do it.

Sample Code To Monitor IntraMonth $P/L

if month(date) <> month(date[1]) then
Begin
	begMonthProf = netProfit; 
	print(d," ",t," ",begMonthProf);
	canTrade = true;
end;
Capture Beginning Of Month Net Profit

Here I am comparing the month of the current bar against the month of the prior bar.  If they are not equal, then we have a new month.  Store the netProfit in the variable begMonthProf.  All you have to do is compare the current bar’s netProfit to begMonthProf and make a decision.  Here is some code:

Making a Trading Decision Based on Monthly $P/L

		If dayOfMonth(date) > 15 and begMonthProf - netProfit >= intraMonthMaxLoss then canTrade = false;
If Down MaxLoss for Month and Past Mid-Month - Quit Trading

If the day of the month is greater than 15 (month half over) and the difference between the current netProfit and begMonthProfit is greater than a negative intraMonthMaxLoss then quit trading for the month.  Only turn it back on the first bar of the next month.  See how this works for your algos.

How to Keep Track of BuysToday and SellsToday

The Useful MP

We all know how to use the reserved word/function MarketPosition – right?  Brief summary if not – use MarketPosition to see what your current position is: -1 for short, +1 for long and 0 for flat.  MarketPosition acts like a function because you can index it to see what you position was prior to the current position – all you need to do is pass a parameter for the number of positions ago.  If you pass it a one (MarketPosition(1)) then it will return the your prior position.  If you define a variable such as MP you can store each bars MarketPosition and this can come in handy.

mp = marketPosition;

If mp[1] <> 1 and mp = 1 then buysToday = buysToday + 1;
If mp[1] <> -1 and mp = -1 then sellsToday = sellsToday + 1;
Keeping Track of Buy and Sell Entries on Daily Basis

The code compares prior bar’s MP value with the current bar’s.   If there is a change in the value, then the current market position has changed.   Going from not 1 to 1 indicates a new long position.  Going from not -1 to -1 implies a new short.  If the criteria is met, then the buysToday or sellsToday counters are incremented.  If you want to keep the number of buys or sells to a certain level, let’s say once or twice,  you can incorporate this into your code.

If  time >= startTradeTime and t < endTradeTime and 
	buysToday < 1 and 
	rsi(c,rsiLen) crosses above rsiBuyVal then buy this bar on close;
If  time >= startTradeTime and t < endTradeTime and 
	sellsToday < 1 and 
	rsi(c,rsiLen) crosses below rsiShortVal then sellShort this bar on close;
Using MP to Keep Track of BuysToday and SellsToday

This logic will work most of the time, but it depends on the robustness of the builtin MarketPosition function Look how this logic fails in the following chart:

I didn't want entries in the same direction per day!
I only wanted 1 short entry per day!

MarketPosition Failure

Failure in the sense that the algorithm shorted twice in the same day.  Notice on the first trade how the profit objective was hit on the very next bar.  The problem with MarketPosition is that it only updates at the end of the bar one bar after the entry.  So MarketPosition stays 0 during the duration of this trade.  If MarketPosition doesn’t change then my counter won’t work.  TradeStation should update MarketPosition at the end of the entry bar.  Alas it doesn’t work this way.  I figured a way around it though.  I will push the code out and explain it later in more detail.

Input: rsiLen(14),rsiBuyVal(30),rsiShortVal(70),profitObj$(250),protStop$(300),startTradeTime(940),endTradeTime(1430);

Vars: mp(0),buysToday(0),sellsToday(0),startOfDayNetProfit(0);

If d <> d[1] then
Begin
	buysToday = 0;
	sellsToday = 0;
	startOfDayNetProfit = netProfit;
end;

{mp = marketPosition;

If mp[1] <> 1 and mp = 1 then buysToday = buysToday + 1;
If mp[1] <> -1 and mp = -1 then sellsToday = sellsToday + 1;}

If entriesToday(date) > buysToday + sellsToday then 
Begin
	If marketPosition = 1 then buysToday = buysToday + 1;
	If marketPosition =-1 then sellsToday = sellsToday + 1;
	If marketPosition = 0 then
	Begin
		if netProfit > startOfDayNetProfit then
		begin
			if exitPrice(1) > entryPrice(1) then buysToday = buysToday + 1;
			If exitPrice(1) < entryPrice(1) then sellsToday = sellsToday + 1;
		end;;
		if netProfit < startOfDayNetProfit then
		Begin
			if exitPrice(1) < entryPrice(1) then buysToday = buysToday + 1;
			If exitPrice(1) > entryPrice(1) then sellsToday = sellsToday + 1;
		end;
	end;
	print(d," ",t," ",buysToday," ",sellsToday);
end;

If  time >= startTradeTime and t < endTradeTime and 
	buysToday < 1 and 
	rsi(c,rsiLen) crosses above rsiBuyVal then buy this bar on close;
If  time >= startTradeTime and t < endTradeTime and 
	sellsToday < 1 and 
	rsi(c,rsiLen) crosses below rsiShortVal then sellShort this bar on close;

SetProfittarget(profitObj$);
SetStopLoss(protStop$);

SetExitOnClose;
A Better Buy and Short Entries Counter

TradeStation does update EntriesToday at the end of the bar so you can use this keyword/function to help keep count of the different type of entries.  If MP is 0 and EntriesToday increments then you know an entry and an exit has occurred (takes care of the MarketPosition snafu) – all you need to do is determine if the entry was a buy or a sell.  NetProfit is also updated when a trade is closed.   I establish the StartOfDayNetProfit on the first bar of the day (line 9 in the code) and then examine EntriesToday and if NetProfit increased or decreased.  EntryPrice and ExitPrice are also updated at the end of the bar so I can also use them to extract the information I need.   Since MarketPosition is 0  I have to pass 1 to the EntryPrice and ExitPrice functions – prior position’s prices.  From there I can determine if a Long/Short entry occurred.  This seems like a lot of work for what you get out of it, but if you are controlling risk by limiting the number of trades (exposure) then an accurate count is so very important.

An alternative is to test on a higher resolution of data – say 1 minute bars.  In doing this you give a buffer to the MarketPosition function – more bars to catch up.

 

Pyramiding and then Scaling Out at Different Price Levels – EasyLanguage

TOTAL, TOTAL, TOTAL – an important keyword

I just learned something new!  I guess I never programmed a strategy that pyramided at different price levels and scaled out at different price levels.

Initially I thought no problem.  But I couldn’t get it to work – I tried everything and then I came across the keyword Total and then I remembered.  If you don’t specify Total in you exit directives then the entire position is liquidated.  Unless you are putting all your positions on at one time – like I did in my last post.   So remember if you are scaling out of a pyramid position use Total in your logic.

vars: maxPosSize(2);

If currentContracts < maxPosSize - 1 and c > average(c,50) and c = lowest(c,3) then buy("L3Close") 1 contract this bar on close;
If currentContracts < maxPosSize and c > average(c,50) and c = lowest(c,4) then buy("L4Close") 1 contract this bar on close;


If currentContracts = 2 and c = highest(c,5) then sell 1 contract total this bar on close;
If currentContracts = 1 and c = highest(c,10) then sell 1 contract total this bar on close;
Scaling Out Of Pyramid

Why you have to use the Total I don’t know.  You specify the number of contracts in the directive and that is sufficient if you aren’t pyramiding.  The pyramiding throws a “monkey wrench” in to the works.